Proposal for a New Task: Aeroallergens and Allergic Diseases

GEO Health and Environment Community of Practice
WMO, Geneva March 29-31, 2011

Hillel S. Koren, Ph.D.
Environmental Health, LLC

Institute of the Environment
University of North Carolina
Chapel Hill, North Carolina
Why Aeroallergens?

- **Pollen**
 - 17% of the general population is sensitized to pollen
 - *Tree* - birch, cedar, oak, mulberry
 - Grass
 - Ragweed

- **Fungi**
 - 10% of the general population
 - 40% of the asthmatic population
 - Basidiomycetes (mushrooms)
 - Alternaria

- **Associated Allergenic Illnesses**
 - Asthma
 - Allergic Rhinitis
 - Atopic dermatitis/eczema
Anthropogenic

- Gaseous pollutants
 - SO₂, NOx, O₃, CO, VOCs (PAH, benzene, aldehydes etc)
- Particulates pollutants
 - coarse PM 10
 - fine PM 2.5
 - ultrafine (<0.1μm)

Primary Biological Aerosol Particles (PBAPS)

- fur fibres, dandruff, skin fragments
- **pollen**, plant fragments, spores
- bacteriae, algae, fungi, viruses
- protein ‘crystals’

25 %

of atmospheric aerosol

Jaenicke (2005) Science 308,73
BY THE NUMBERS: ALLERGIES IN THE UNITED STATES

- 18.0 million adults suffer from hay fever allergies20
- 7.1 million children suffer from hay fever allergies20
- 13.1 million doctor’s visits for hay fever each year20
- $11.2 billion in medical costs to treat allergic rhinitis each year21
- 4 million missed or low productivity workdays each year due to hay fever allergies22
- $700 million in lost productivity due to hay fever allergies each year22
Projected Number of Persons with Asthma 1980-2020
Atopy: Genetic predisposition to the formation of increased levels of IgE antibody

Sensitization

Pollution

Antigen-specific IgE antibody production

Target Organ Response
GEOSS Common Infrastructure

Nine Societal Benefit Areas

- Climate
- Disasters
- Weather
- Water
- Energy
- Health
- Agriculture
- Biodiversity
- Ecosystems

Registries:
- Services
- Standards
- Best Practices
- Requirements

Web Portal
Clearing-house

GEOSS Common Infrastructure

Applications
Models
Metadata
Data
Services
Products

Earth Observations

3 Sub Health SBA areas:
- Air Quality
- Aeroallergens
- Infectious Diseases
Aeroallergen SBA Sub-Area

GEO Task US- 09-01a

Diseases:
- Allergic asthma and allergic rhinitis

Major themes:
- Aeroallergens, production, and release
- Aeroallergens and air pollution interaction
- Meteorology: Humidity, rain, thunderstorms

H. Koren - Aerobiolgy analyst
Hirst Type Volumetric Sampler

*Hirst, 1952
Using phenological monitoring/research to:

- Educate
 - Inform the public, media, school children
 - Establish inventories
 - Enlist participation in climate change initiatives
- Integrate existing observation systems to better inform public health
 - Analyzing/quantifying impacts
 - Standardizing international monitoring programs

http://www.euro.who.int/globalchange/Assessment/20021114_2
GLOBAL PHENOLOGY DATA

GEO 2009-2001 Working Plan Sub-task Number: US-09-03d

Elisabeth Koch, Mark D. Schwartz, Jake Weltzin

Zentralanstalt für Meteorologie und Geodynamik

EUMETNET

USA

NPN

National Phenology Network
Predicting Pollinating Seasons

Methodology: Numerical simulation of large-scale atmospheric transport of allergenic pollen
- Identified source areas (forest inventories; satellite images of broadleaf forests)
- Applied existing dispersion models and birch flowering model (climatalogical dates)

Potential Use: Forecasting tool; predicting modified pollinating seasons

Needs: Parameter refinements; European-wide flowering model

Online Alerts/Forecasts

National Allergy Forecast
<pollen.com>

European pollen tracking
<polleninfo.org>
GEO Task US-09-01a
Critical Earth Observation Priorities
Final Report • October 2010

Recent Contributions to GEO Efforts

User Requirements Registry

Research Needs
Create a New Research Need or Edit an Existing Research Need

Information for users and implementers

For information on individual fields, click on the information icon.

Research Need Definition

Short name:
aeroallergen remote sensing

Long title:
Development and validation of remote sensing (RS) technologies for use in aeroallergen earth observations.
Agencies’ Efforts in Aeroallergens/Allergic Diseases
Allergic Diseases and Climate Change
Predicting Regional Allergy Hotspots in Future Climate Scenarios – Putting the Where & When on Wheezing

EPA Grant Number: R834359
Title: Predicting Regional Allergy Hotspots in Future Climate Scenarios – Putting the Where & When on Wheezing
Investigators: Foster, David R., Rogers, Christine A., Stinson, Kristina
Institution: Harvard University, University of Massachusetts
EPA Project Officer: Bloomer, Bryan
Project Period: September 1, 2009 through August 31, 2013
Project Amount: $898,634
RFA: Climate Change and Allergic Airway Disease (2008)
Research Category: Global Climate Change
Climate Change Influences on Aeroallergens

AEROBIOLOGICAL PATHWAY

Range shifts & increased production

Changes in timing & aerosolization

Changes in wind speed & direction, humidity

Dispersal

Changes in human behavior

Exposure

Change in size, shape & charge of bioaerosol particles

Deposition

Change in human vulnerabilities

Release

Source

Allergen concentration is a sensitive measure of global warming
* Field studies at high CO2 concentrations show plant-dependent enhanced growth and sporulation of fungi (Staddon 2002)
Seasonality in Symptom Severity Influenced by Temperature or Grass Pollen: Results of a Panel Study in Children with Eczema

Ursula Krämer,*† Stephan Weidinger,‡ Ulf Darsow,‡ Matthias Möhrenschlager,‡ Johannes Ring,‡ and Heidrun Behrendt‡

*Institut für umweltmedizinische Forschung IUF, Düsseldorf, Germany; †Department of Environmental Dermatology and Allergy, National Research and Environment (GSF)/Technical University, Munich, Germany; ‡Department of Dermatology and Allergy Biederstein, Technical University, Munich, Germany

Betula Peak Date, Denmark

Viborg: \(Y_m = 122.1 \), \(\beta = -0.67 \), \(r = -0.81 \), p<0.001 (***)

Copenhagen: \(Y_m = 123.3 \), \(\beta = -0.74 \), \(r = -0.92 \), p<0.001 (***)

15 day advancement in 20 yrs

Rasmussen 2002
• Trends for birch pollen annual totals and sensitization rates (1976–2002 n.s.)

• Proportion of respiratory allergies 1984–2002 in %; p < .001 in Vienna

Jaeger and Berger
2000
(Source: WHO 2003)
Data Needs/Gaps for Decision Making & Benefiting Public Health

- Gap – Insufficient data to conduct trend analysis & long-term forecasting
- Action – Establish networks to cover more land and develop models combining RS and ground-based technologies to achieve real-time forecasting
- Gap – Pollen grain counts are useful but are labor intensive
- Action - Develop more automated systems to assess aeroallergen conc. and provide long-term trends of allergens
- Gap – Phenology (flowering data) and aerobiology data seem to correlate but lack coordinated strategic planning
- Action – Phenological programs need to be adapted to meet the needs of pollen/allergen forecasting; improve communication
Experts* Supporting the New Task and Its Goals

Bernard Clot
MétéoSuisse
Payerne, Switzerland

Carmen Galan
Department of plant biology and Ecology
Faculty of Sciences
University of Cordoba
Cordoba, Spain

Estelle Levetin
Faculty of Biological Science
The University of Tulsa
Tulsa, OK 74104
USA

Christine Rogers
School of Public Health and Health Science
University of Massachusetts
Amherst, MA
USA

Michel Thibaudon
Réseau National de Surveillance Aérobiologique
F - 69610 Saint Genis L'Argentière
France

Richard Weber
National Jewish Medical & Research
Denver, CO
USA

* AG members
Bless You!!!
Thank you

H. Behrendt, ZAUM