GEO 2012-2015 WORK PLAN

17 December 2012
Introduction

The GEO Work Plan provides the agreed framework for implementing the GEOSS 10-Year Implementation Plan (2005-2015). It is a living document that is updated annually.

THE 2012-2015 WORK PLAN

The 2012-2015 Work Plan reflects the conclusions of the GEO Plenary (VII and VIII), Beijing Ministerial Declaration, and Mid-Term, Second, and Third Evaluations of GEOSS. It is structured to build a user-driven GEOSS and therefore engage users, especially those in developing countries.

Target-Driven Approach

The 2012-2015 Work Plan has been designed to meet the 2015 GEOSS Strategic Targets (see “Related GEOSS Strategic Targets” section under each Task). As a result, the Tasks of the Work Plan correspond to outcomes identified as being necessary to meet the Strategic Targets.

3-Part Structure

The Work Plan has been organized into three major parts: Part 1 on “Infrastructure” features the physical cross-cutting components of an operational and sustainable GEOSS, including interoperable observing, modelling and dissemination systems. Part 2 on “Institutions and Development” describes “GEO at work” and the community’s efforts to ensure that GEOSS is sustainable, relevant and widely used; it focuses on reinforcing data sharing, resource mobilization, capacity development, user engagement and science and technology integration. Part 3 on “Information for Societal Benefits” focuses on information, tools, and end-to-end systems that should be available through GEOSS to support decision-making across the nine Societal Benefit Areas.

26 Tasks

Consistent with the Target-driven approach described above, the 2012-2015 Work Plan proposes a streamlined number of Tasks. Each of the 26 Tasks is composed of, and implemented through, a limited number of Components. Each Component is supported by Leads (GEO Members and Organizations), a Point of Contact (representing one of the Leads) and contributors (additional Members and Organizations).

All information pertaining to a Component is compiled into a document referred to as the Component Sheet. The latter follows the logic model recommended by the Monitoring and Evaluation Working Group (outputs – activities – resources) and identify implementation details such as expected achievements by 2015, milestones, issues and gaps, key users, and information relevant to decision making.

Component Sheets are updated at least twice a year. They serve as a basis for monitoring GEOSS implementation as well as for reporting on Work Plan implementation progress. Their most recent versions are available online through the Work Plan Information Management System, see www.earthobservations.org/geoss_imp.shtml.
Why Participate?
The GEO Work Plan provides a flexible action-oriented framework for developing new projects within and across areas, and coordinating strategies and investments. Benefits and opportunities include inter-alia: fostering networking and partnerships (new contacts and collaborations); launching regional and/or global initiatives (e.g. GEOBON, GEOGLAM); providing access to data (making more data available); enlarging user-bases (users grow in numbers and diversity); developing and maintaining capacity (participants build on complementarity); increasing visibility and high-level support (e.g. through the GEO Website, Newsletter, Plenary, Ministerial); and leveraging funding for activities (funding mechanisms value contributions to GEOSS implementation, like the European 7th Framework Programme).

Getting Engaged
Getting engaged starts with an informal “signing in” procedure through which representatives of GEO Members or Participating Organizations volunteer to lead, or contribute to, a Task Component (see related 26th Executive Committee document for details on roles and responsibilities). This is typically done through an email addressed to the GEO Secretariat at secretariat@geosec.org, and welcome at any point of time. Leads and contributors to the Work Plan assume their roles on a best-effort basis, voluntarily, in the spirit of advancing GEOSS consistent with the GEOSS 10-Year Implementation Plan. Their effective and proactive engagement is critical to ensuring the success of the Work Plan in establishing GEOSS.

Update
Every year, the GEO Secretariat prepares an update of the 2012-2015 Work Plan based on consultations with GEO Members and Participating Organizations and recommendations from the three Implementation Boards. These recommendations derive from the actual work of the Implementation Boards to (i) assess Strategic Target completion progress; (ii) actively coordinate activities across Tasks; and (iii) advise on Task issues of technical and non-technical nature. The update process allows for adjustments and introduction of new activities. The Work Plan update is submitted to the GEO Plenary for acceptance as a living document.
TABLE OF CONTENTS

1 INFRASTRUCTURE

IN-01	Earth Observing Systems ..	6
IN-02	Earth Data Sets ...	9
IN-03	GEOSS Common Infrastructure ..	11
IN-04	GEOSS Communication Networks ..	13
IN-05	GEOSS Design and Interoperability ...	15

2 INSTITUTIONS AND DEVELOPMENT

ID-01	Advancing GEOSS Data Sharing Principles ..	16
ID-02	Developing Institutional and Individual Capacity ..	18
ID-03	Science and Technology in GEOSS ...	20
ID-04	Building a User-Driven GEOSS ..	21
ID-05	Catalyzing Resources for GEOSS Implementation ...	23

3 INFORMATION FOR SOCIETAL BENEFITS

SB-01	Oceans and Society: Blue Planet ..	25
SB-02	Global Land Cover ..	29
SB-03	Global Forest Observation ...	32
SB-04	Global Urban Observation and Information ..	34
SB-05	Impact Assessment of Human Activities ...	36

DISASTERS

| DI-01 | Informing Risk Management and Disaster Reduction .. | 38 |

HEALTH

| HE-01 | Tools and Information for Health Decision-Making ... | 42 |
| HE-02 | Tracking Pollutants ... | 45 |

ENERGY

| EN-01 | Energy and Geo-Resources Management ... | 47 |

CLIMATE

| CL-01 | Climate Information for Adaptation ... | 49 |
| CL-02 | Global Carbon Observation and Analysis .. | 52 |

WATER

| WA-01 | Integrated Water Information (incl. Floods and Droughts) ... | 54 |

WEATHER

| WE-01 | High-Impact Weather Prediction and Information .. | 59 |

ECOSYSTEMS

| EC-01 | Global Ecosystem Monitoring ... | 61 |

AGRICULTURE

| AG-01 | Global Agricultural Monitoring and Early Warning .. | 64 |

BIODIVERSITY

| BI-01 | Global Biodiversity Observation (GEO BON) .. | 66 |

APPENDIX A: GEO COMMUNITIES OF PRACTICE

APPENDIX B: ACRONYMS
TEMPLE
APPLIED TO EACH TASK

XX-XX [Task Title]

Related GEOSS Strategic Targets
[This section identifies the main Strategic Targets addressed by the Task. It features the most relevant “demonstrated by” bullet points identified in the Strategic Targets document (see GEO-VI Document 12 Rev1 at http://www.earthobservations.org/documents.shtml)]

Description
[This section sets out the main objectives of the Task, consistent with the Strategic Targets above]

For each Component,

Component [Building block required to meet the Task objectives]

Leads
[GEO Members and/or Participating Organizations taking responsibility for ensuring, on a best-effort basis, that the Component is implemented. One of the Leads provides a Point of Contact for the Component. Leads (and Points of Contact) are regularly updated in the online version of the Work Plan, based on the input of the GEO community]

Priority Actions
[Practical actions and outputs supporting the Component implementation – defined and implemented by Leads and contributors. This section includes references to ongoing initiatives]

To Be Implemented in Connection with
[This section provides a (non-exhaustive) list of Tasks whose underpinning activities should be connected to those of the present Task. The list sheds light on cross-Task relationships and interdependence. Note that “Infrastructure” and “Institutions and Development” Tasks are inherently cross-cutting and therefore relevant to all Work Plan Tasks]

Resources Available for Implementation
[This sections attempts to give an indication of the main resources available for Task implementation. It aims to include major funded projects and activities, direct financial contributions and in-kind support (human resources). This section is under development and tentative. It will be regularly updated in the online version of the Work Plan, based on the input of the GEO community]
1 INFRASTRUCTURE

IN-01 Earth Observing Systems

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Architecture: Coordinated planning and sustained operation of national, regional and global observing and information systems within an interoperability framework. Continual improvement in observations and information available to users through the transition of research outcomes and systems into operational use, and through an optimal mix of space-based, airborne and in-situ observing platforms. Increased efficiency in the operation of observational systems through convergence among global, regional and national facilities.

Weather: Identification and addressing of critical gaps in observational networks that reflect, in particular, the needs of developing countries, the need for continuity in space-based and in-situ observations, and the potential benefits of an interactive observing system to support user needs.

Water: An operationalized and sustained global network of in-situ observation sites.

Description
Promote and coordinate surface-based and space-based observing systems to provide long-term continuous observations of all components of the Earth System (atmosphere, ocean, terrestrial, ice, solid earth). Ensure that the Earth and its physical processes are monitored globally across spatial and temporal scales. Identify critical gaps in existing observational networks with particular focus on: the needs of developing countries, the need for continuity of observations, the need for increased development of in-situ networks, and the potential benefits of enhanced observing systems. Individual Earth observing systems operated by national, regional and international entities are integral to GEOSS.

Components

C1 Development, Maintenance and Coordination of Surface-based Observing Networks (in-situ and airborne)

Leads
France (FRB), Germany (BFG, DWD) and EEA (tim.haigh@eea.europa.eu)

Priority Actions
• Undertake cross-cutting and thematically-oriented coordination activities to set up, consolidate and sustain in-situ solutions which can serve GEOSS. Explore and determine how in-situ governance and coordination frameworks put in place for GMES (or research purposes) can interface or be extended to achieve global coverage and contribute most effectively to GEOSS Targets. Build upon the GMES In-situ Coordination (GISC) initiative, as appropriate
• Improve global coordination on the operation of instrumented aircrafts and hyperspectral imaging sensors for in-situ data collection
• Improve the global and regional coordination of seismographic networks (see also DI-01)
• Support the collection, analysis and archiving of water-cycle in-situ measurements (rain-gauge, river-gauge, soil moisture, and groundwater). Operate a global network of in-situ stations on the state and trends of global inland water quality. Collect standardized observations on glacier fluctuations and develop glacier inventories (see also WA-01)
• Support the development of an African ceilometer network to measure aerosol concentration within the atmosphere. Implement a basic demonstration in northern Africa (5 stations: Tenerife,
Cairo, Tamanrasset, Niamey, Dakar) for: (i) characterizing the Saharan air layer thickness/top; and (ii) verifying dust models and satellite-derived products

- Promote rapid development of a global high-frequency-radar network to measure coastal surface currents (see also SB-01)
- Operate and maintain a global network of tower sites to measure the exchanges of carbon dioxide, water vapor, and energy between terrestrial ecosystem and atmosphere (FLUXNET; see also CL-02)

C2 Development and Coordination of Space-based Observing Systems

Leads
China (CRESDA), Japan (JAXA), Spain (CSIC) and CEOS (NASA, brian.d.killough@nasa.gov)

Priority Actions
- Promote rapid development of the “CEOS Constellations Concept”. Observations from Virtual Constellations provide higher temporal, spatial, and spectral resolution, as well as improved data management and dissemination. Virtual Constellations are under development in seven areas: Precipitation, Atmospheric Composition, Land Surface Imaging, Ocean Surface Topography, Ocean Colour Radiometry, Ocean Surface Vector Wind, and Sea-Surface Temperature
- Develop a hydrometeorological satellite network for high elliptical orbit ‘Arctic’ to maintain continued northern hemisphere observations
- Explore synergies with the international Earthmapper constellation for global high-resolution observations (including infra-red bands)
- Establish and upgrade the capacity of ground stations with a footprint in Africa to receive, process, store and distribute CBERS (China-Brazil Earth Resources Satellite) imagery. Data will be distributed free of charge to all interested African countries within the footprint of the respective ground stations
- Promote the AfricaGeoSat-1 project (for a dedicated African geostationary imaging space system) to regional agencies and relevant players across Africa. Coordinate and finalize the technical specifications of the space system by consolidating requirements (e.g. for capacity building). Identify synergies with existing and planned systems, and link AfricaGeoSat-1 unique applications with ongoing activities (e.g. forest, agriculture and water management)
- Establish actions securing the provision of Essential Climate Variables (ECVs) data from satellite systems (see also SB-02, CL-01)
- Promote space missions to fill gaps arising from the loss and limited lifetime of key instruments (e.g. on ESA Envisat, NASA AURA)

C3 Promotion and Coordination across Surface-based and Space-based Observing Systems

Leads
Spain (CSIC) and CEOS (NASA)

Priority Actions
- Promote stable, reliable and long-term operations of Earth observing networks within the framework of national policies and international obligations. Demonstrate that global observing systems do not only serve research but also underpin products and services across all Societal Benefit Areas
- Engage with the Sustaining Arctic Observing Networks (SAON) to (i) improve networking among existing observing systems and sites; (ii) create pan-Arctic observing networks; and (iii) ensure
interoperability of Arctic networks with other GEO networks. Develop effective linkages between
Communities of Practice and SAON initial work (e.g. on metadata standards and practices, data
integration and visualization, community-based monitoring) in areas such as Arctic Ocean
structure, permafrost and sea ice, hazardous substances, and biodiversity (see also WA-01)

• Develop intergovernmental mechanisms for coordinating terrestrial observations needed for
climate studies and forecasting (GTOS; see also CL-01)
• Achieve a complete and stable Global Observing System (GOS)
• Enhance the coordination of coastal/open-ocean observations and modelling initiatives in support
of a global ocean observation system (GOOS; see SB-01)
• Promote geodetic reference frames and the monitoring of global change signals (e.g. in gravity
field or Earth rotation). The “International Terrestrial Reference Frame” and “International
Celestial Reference Frame” provide foundations for most Earth observations (GGOS)
• Document user requirements and the Earth observing systems ability to produce an agreed core set
of environmental, geological, and socio-economic variables relevant to users

C4 Radio-Frequency Protection

Leads
WMO (WIS, josearimateabrito@gmail.com)

Priority Actions

• Advocate protection for all parts of the radio frequency spectrum needed to measure, collect and
disseminate Earth observation data. Monitor, with highest care, the case of passive bands,
assessing the potential impact of interference on Earth observation applications and final products
• Encourage GEO Members to liaise with national representatives in radio-communication fora – to
ensure sustained political support for radio-frequency protection
• Undertake coordinated activities with representatives from the International Telecommunication
Union (ITU). Link with the Scientific Committee on Frequency Allocations for Radio Astronomy
and Space Science (IUCAF)

To Be Implemented in Connection with
All Work Plan Tasks

Resources Available for Implementation (tentative)

− EU FP7 project GMES In-situ Coordination (GISC)
− Funding is sought for a follow-on project from 2013, which may provide resources to extend the
approach to global in situ data in support of the GEOSS Strategic Targets
− In-kind support from EEA, WMO
− Global Precipitation Climatology Centre (GPCC) web portal (http://gpcc.dwd.de)
IN-02 Earth Data Sets

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Architecture: Supportive of the whole Architecture target.

Data Management: Increased use of observations through advances in all aspects of life-cycle data management, integration, and data recovery and conversion. Removal of important data management deficiencies. Enhanced information extraction from historical, current and future source data.

Science and Technology: Increased accessibility of global sets of scientific data necessary for improved Earth System modelling in the different GEOSS Societal Benefit Areas.

Description

Foster advances in life-cycle data management, including processing, inter-calibration and validation, quality assurance, harmonization, archiving, integration, assimilation, modelling, long-term preservation, digitization, and visualization. Work to link regional systems and national data infrastructures into global systems to create new information sources within GEOSS. Promote the application of GEOSS interoperability principles to Earth data sets so that data are easily accessible and readily integrated to meet users’ needs. Support the development and harmonization of global data, metadata, and products commonly required across Societal Benefit Areas.

Components

C1 Advances in Life-cycle Data Management

Leads

China (BNU), Japan (University of Tokyo), Spain (CSIC), United States (DOE), CEOS (JAXA, CSA, miura.satoko@jaxa.jp) and ESA

Priority Actions

• Improve and coordinate data management approaches that encompass a broad perspective of the observation data life-cycle – from processing to modelling and visualization. Identify and implement recommendations for best practices

• Develop a GEO strategy for data quality assurance, building upon ongoing initiatives such as the CEOS Quality Assurance for Earth Observation (QA4EO). Start with space-based observations and gradually expand into in-situ observations. Support related calibration and validation (cal/val) activities

• Develop a GEO strategy for the long-term preservation of Earth observation data, building upon existing long-term data preservation guidelines. Support campaigns for the digitization of observation databases. Promote the use of free software for observation database management

• Ensure the availability of accurate, homogeneous, long-term, stable, global geodetic reference frames as a mandatory framework and the metrological basis for Earth observation. Build upon the Earth System Spatial Grid (ESSG) as a new Earth system three-dimension grid and spatial framework for Earth data sets

• Build upon the (i) Data Integration and Analysis System (DIAS) to assess and document Earth datasets in cooperation with operational- and research- data centers; and (ii) European environment information and observation network (Eionet) to coordinate the delivery of timely, nationally validated, high-quality environmental data from individual countries
C2 Development of Regional/Global Information and Cross-cutting Datasets (including socio-economic information)

Leads
Japan (AIST, ISCGM, GSI, JAXA), Spain (CSIC, IGN), United Kingdom (UCL) and United States (JPL, michael.abrams@jpl.nasa.gov)

Priority Actions
- Provide a suite of global datasets based on improved and validated data sources. Facilitate interoperability among data sets using the GEOSS architecture
- Produce a global, coordinated and integrated Digital Elevation Model (DEM), facilitating interoperability among existing Digital Elevation Model data sets
- Improve Global Map and foster its use across Societal Benefit Areas. Global Map datasets provide a full and consistent coverage of land on the Earth – at 1 km resolution or higher
- Develop a global digital geological map of the world. Make existing geological map data web-accessible. Use OneGeology to transfer know-how to the developing world. Develop a 3D geo-information infrastructure to enhance the effectiveness of in-situ geo-scientific datasets
- Support the development of a global soil information system incorporating data from global, regional and national soil data projects
- Develop a global road and human settlements map on GEO Grid. Collect, maintain, and evaluate relevant remote sensing and Geographic Information Systems data. Develop systems on GEO Grid towards sharing, developing and distributing data (see also SB-04)

To Be Implemented in Connection with
IN-01 Earth Observing Systems
IN-03 GEOSS Common Infrastructure
IN-04 GEOSS Communication Networks
ID-01 Advancing GEOSS Data Sharing Principles
ID-04 Building a User-Driven GEOSS
SB-02 Global Land Cover
SB-04 Global Urban Observation and Information
WA-01 Integrated Water Information
AG-01 Global Agricultural Monitoring

Resources Available for Implementation (tentative)
- Japan (AIST) support for GEO Grid system development
- OneGeology project (www.onegeology.org); OneGeology-Europe products (e.g. pan European dynamic digital geological map at 1:1000000 scale)
- e-SOTER project (www.esoter.org) and GlobalSoilMap.net
- European environment information and observation network (Eionet; www.eionet.europa.eu/)
- European activities related to the INSPIRE Directive and ESA Long Term Data Preservation
- Chinese activities from National Science Funds of China (NSFC), Bejing Normal University China, University of Mining and Technology
- In kind support from CEOS Working Groups (e.g. DSIG, QA4EO)
IN-03 GEOSS Common Infrastructure

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Architecture: Deployment, population, and enablement of sustained operations and maintenance of a user-friendly and user-accessible GEOSS Common Infrastructure, including the core components and functions that link the various resources of GEOSS. The GEOSS Common Infrastructure will consist of web-based portals, clearinghouses for searching data, information and services, registries and other capabilities supporting access to GEOSS components, standards, and best practices.

Data Management: Open, reliable, timely, consistent, and free access to a core set of essential environmental observations and information products, supported by adequate metadata, by users across all GEOSS Societal Benefit Areas in accordance with GEOSS Data Sharing Principles.

Description

Facilitate and support the sustained operation, maintenance and enhancement of a user-friendly GEOSS Common Infrastructure (GCI) – allowing users to search and access GEOSS resources (e.g. datasets and services). While ensuring routine operations, aim at improving and maintaining the GCI as the architectural framework essential to implementing the GEOSS Data Sharing Principles. Support the integration of new GCI capabilities and provide the resources needed for the discovery of, and access to, a core set of data and information across all Societal Benefit Areas. Continuously engage with GCI core service operators, data and service providers, and user communities.

Components

C1 Evolution and Enhancement of the GEOSS Common Infrastructure (GCI)

Leads

European Commission (ESA), Japan (University of Tokyo), Spain (CSIC, IGN), United States (USGS) and ESA (mirko.albani@esa.int)

Priority Actions

- Define and maintain an Architecture Evolution Strategy for the GEOSS Common Infrastructure (GCI) based on periodic gap analyses. This includes defining a GCI requirements baseline, specifying interfaces between GCI components and external components, and identifying enhancements building upon new technologies and R&D
- Enhance GCI components on the basis of (i) the GCI Architecture Evolution Strategy (see IN-05) and (ii) coordinated input from multiple sources (e.g. online feedback, data sharing community, users and providers of GEOSS information, usability testing). Proceed with enhancements having assessed feasibility and need, urgency, and resources needed for implementation
- Regularly perform usability testing to ensure access by users of all levels of technical ability. Organize demonstrations of the GCI capabilities on the occasion of major events (e.g. GEO Plenary) – to collect feedback from users and suggestions for enhancements
- Support the integration of new GCI capabilities such as the GEOSS Data Collection of Open Resources for Everyone (GEOSS Data-CORE; see ID-01). Identify resources needed for the discovery of, and access to, the Data-CORE. Call to the GEO community to (i) identify operational products/data catalogs and repositories; and (ii) support the seamless search of, and access to, these data catalogs and repositories
C2 Operations and Maintenance of GCI Components

Leads
United States (USGS, ddnebert@usgs.gov) and ESA

Priority Actions
- Manage routine operations through (i) proper monitoring, maintenance and administration of GCI software and hardware platforms; (ii) ad-hoc problem solving; and (iii) implementation and administration of a database gathering information on GCI problems and possible enhancements
- Maintain the GCI as the architectural framework essential to implementing the Data Sharing Principles. Keep procedures for registering and maintaining metadata simple, or partially automated. Enable users to easily discover GEOSS resources and to search for data or services that (i) fit a particular application or Societal Benefit Area(s); and/or (ii) comply with full and open exchange. Users should also be able to easily understand usage requirements and restrictions indicated by data providers

To Be Implemented in Connection with
All Work Plan Tasks

Resources Available for Implementation (tentative)
- GEO Web Portal (ESA), GEOSS Clearinghouse (USGS/GMU), GEOSS Component and Service Registry (USGS/GMU), GEO Best Practices Wiki (IEEE), GEOSS Standards and Interoperability Registry (IEEE), GEOSS User Requirements Registry (US EPA), EuroGEOSS Discovery Broker (Italy CNR)
- Contracts (through 2015) of GEOSS Common Infrastructure component providers for operations and maintenance
- European FP7 projects: GEOWOW (through 2014), the GEOSS Interoperability for Weather, Ocean and Water project aimed at improving the GCI, supporting the Data-CORE and implementation of a distributed architectural model, federating data holdings, in addition to objectives specific to the three supported societal benefit areas
- EuroGEOSS, GENESI (ongoing)
- European activities related to the INSPIRE Directive
- Pledges for operations and maintenance of each GCI Component are required through 2015. This is a commitment to abide by the Consolidated Requirements, where available, and maintain an uptime availability of 99%
IN-04 GEOSS Communication Networks

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Architecture: Supportive of the whole Architecture target.

Data Management: Open, reliable, timely, consistent, and free access to a core set of essential environmental observations and information products, supported by adequate metadata, by users across all GEOSS Societal Benefit Areas in accordance with GEOSS Data Sharing Principles.

Capacity Building: Increased use of Earth observation in policy and decision making. Enhanced participation of developing countries in GEO and GEOSS.

User Engagement: Involvement of users in: reviewing and assessing requirements for Earth observation data, products and services; creating appropriate mechanisms for coordinating user requirements; utilizing data/information delivery systems; and capturing user feedback on an ongoing basis across Societal Benefit Areas. Increased use of geospatial data in all Societal Benefit Areas and in particular in developing countries.

Description

Enhance timely and reliable access to, and delivery of, Earth observation and information from all Societal Benefit Areas. In particular, address access issues in developing countries. Consider the collection of satellite and in-situ data, the transfer of data and products between relevant agencies, and the dissemination of data and products to users. Make use of relevant technology including the Internet, wireless communication (fixed and mobile) networks (e.g. satellite, cellular, WiFi, WIMAX), broadband land connections, and satellite-based direct-broadcast systems independent from ground-based telecommunications infrastructures.

Components

C1 Worldwide Communication Network of Networks

Leads
ESA and IEEE (ghamri@ensiie.fr)

Priority Actions

- Establish and expand a worldwide communication network of interconnected networks based on satellite, fixed land-based and mobile/wireless communication, and data dissemination systems. Provide capabilities such as user access, data exchange and dissemination services in response to users’ and providers’ needs
- Establish a demonstrator that will include data collection and access in under-served regions (e.g. through mobile phone networks, satellite networks and dedicated applications)
- Develop a global network of satellite direct-broadcast stations (DB) with the ability to share and distribute data in near real-time
- Ensure operational exchange of weather, water, climate and hydro-meteorological disaster data and warnings. Build upon the WMO Information System (WIS) and other systems, as appropriate
- Build upon ongoing initiatives such as GEONET and GEOMOBILENET. Explore possible connections with the emerging European Data Relay Satellite (EDRS) system
C2 GEONETCast

Leads
China (CMA), United States (NOAA, yana.gevorgyan@noaa.gov) and EUMETSAT

Priority Actions
• Further develop GEONETCast – a distribution system for GEOSS information using communication satellites and low cost, off-the-shelf reception stations. Evolve GEONETCast into a fully operational global system disseminating data and products across all Societal Benefit Areas
• Enhance interoperability with GEOSS components. Pursue the integration of the GEONETCast collections catalogue with the GEOSS Common Infrastructure
• Foster relationships with data providers and users to enhance data content in line with the evolving needs of users and decision-makers
• Expand interaction with networks of users in developing countries to improve access to data in areas with limited data accessibility. In particular, facilitate improved access to disaster information in developing countries through collaboration with key disaster management mechanisms, including the International Charter on Space and Major Disasters (see also DI-01)
• Enhance the integration of the satellite data distribution system ‘Meteoinform-Mitra’. Expand the GEONETCast broadcast footprint over the Pacific region. Pacific Island states have noted the low availability of environmental information in the region – mainly due to poor internet access and communications infrastructure
• Build capacity for using GEONETcast information, particularly in developing countries. Develop GEONETCast Training Channels to (i) train end-users; and (ii) transmit training materials to local trainers

To Be Implemented in Connection with
All Work Plan Tasks

Resources Available for Implementation (tentative)
− The operation and maintenance of the three GEONETCast component systems are fully funded by the main operating entities (China (CMA); USA (NOAA); EUMETSAT)
− Expansion of the GEONETCast user receive station networks and trainings are mainly funded by the main system operating entities, EC funded projects and through existing and new partnerships with multilateral organizations. New funding will be required to address the need in the Pacific Islands region
IN-05 GEOSS Design and Interoperability

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Architecture: Deployment, population, and enablement of sustained operations and maintenance of a user-friendly and user-accessible GEOSS Common Infrastructure (GCI), including the core components and functions that link the various resources of GEOSS.

Description

Manage the evolutionary technical architecture (design) of GEOSS and contributed Earth observation data and service resources. Promote GEOSS interoperability principles. Enable a sustainable GEOSS of value to the user – supporting the development of the GEOSS Common Infrastructure (GCI) and GEOSS communication networks for the access to, and use of, Earth observations and related services.

Components

C1 GEOSS Design and Interoperability

Leads

China (CMA), European Commission (JRC), Japan (University of Tokyo), Spain (IGN), United States (NOAA), CEOS (NASA), ESA, IEEE (steveb@omstech.com) and OGČ

Priority Actions

• Technical Design of GEOSS and Contributed Resources: Develop a GEOSS technical architecture document that describes the components of GEOSS, including registries, interoperability arrangements, information types, predictive models and dynamic modeling infrastructures (model webs), sensor webs, software/applications, and data, system interfaces, and services

• GEOSS Interoperability Analysis and Support: Quantitatively analyze the standards listed in the Standards and Interoperability Registry. Write software to produce this analysis automatically, and regularly update the listing. Define the most-used standards in each category as "preferred". Actively promote adoption of Preferred Standards in GEOSS Societal Benefit Areas by (i) publicizing the Preferred Standards; (ii) identifying available software that implements the standards; (iii) helping Task Leads understand which non-standard approaches could be supplemented or replaced by equivalent Preferred Standards. Build upon the European INSPIRE experience, as appropriate

• GEOSS Research and Prototyping: Execute and document Architecture Implementation Pilots (AIPs) and related research activities. Recommend improvements to the GEOSS architecture on the basis of AIPs’ outcomes

• Value to the User: Conduct periodic GCI “usability” tests of the GEO Portal by users. Establish appropriate links with the User Requirements Registry.

To Be Implemented in Connection with

IN-03 GEOSS Common Infrastructure

All Work Plan Tasks

Resources Available for Implementation (tentative)

In-kind contributions from the Task Team
2 INSTITUTIONS AND DEVELOPMENT

ID-01 Advancing GEOSS Data Sharing Principles

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Data Management: Open, reliable, timely, consistent, and free access to a core set of essential environmental observations and information products, supported by adequate metadata, by users across all GEOSS Societal Benefit Areas in accordance with GEOSS Data Sharing Principles: (i) Full and open exchange of data, metadata and products shared within GEOSS, recognizing relevant international instruments and national policies and legislation; (ii) All shared data, metadata and products being made available with minimum time delay and at minimum cost; and (iii) All shared data, metadata and products being provided free of charge or no more than the cost of reproduction will be encouraged for research and education.

Description

Support and advance the Declaration of the Group on Earth Observations Ministerial Summit in Beijing, China (5 November 2010), which committed to: (i) Maximize the number of documented datasets made available on the basis of full and open access; (ii) Create the GEOSS Data Collection of Open Resources for Everyone (GEOSS Data CORE), a distributed pool of documented datasets with full, open and unrestricted access at no more than the cost of reproduction and distribution; and (iii) Develop flexible national and international policy frameworks to ensure that a more open data environment is implemented.

Components

C1 Advancing GEOSS Data Sharing Principles

Leads

European Commission (EC FP7), Japan (JAXA), Netherlands (ITC), Spain (CSIC, IGN), United States (USGS) and ICSU (CODATA, bchen@ciesin.columbia.edu)

Priority Actions

• Develop continuously the GEOSS Data-CORE: Maximize the number of datasets made available on the basis of full and open access. Data providers should register their observation and information resources through the GEOSS Common Infrastructure (GCI) directly or via community catalogues. Detailed metadata should also be registered, with no costs or restrictions attached to its use, to facilitate data and service discovery, assessment, and integration for decision support

• Monitor the use and impact of resources made available with full and open access: Develop metrics to assess the impact and progress of data sharing and, where possible, implement such metrics into the GCI. Metrics should include clear performance indicators and milestones towards progress. Users who benefit from full and open access would be asked to document the use and impact of the data, metadata and products received

• Establish national coordinating mechanisms to promote and monitor engagement with the implementation of the GEOSS Data Sharing Principles: Establish a process within countries to identify and reduce institutional, legal and technical barriers to full and open exchange of data, metadata and products. Encourage governmental data providers to make their datasets available on the basis of full and open exchange. Governments should also seek to implement and promote the Implementation Guidelines as best practices at the national and institutional levels. This process should enable feedback to be provided to the GEO
• Maintain the GEOSS Common Infrastructure as the architectural framework essential to implementing the Data Sharing Principles (see IN-03)

To Be Implemented in Connection with

All Work Plan Tasks

[Note that Infrastructure Tasks (IN-xx) cover the technical aspects of data sharing, for example, the implementation of a search and discovery capability for the GEOSS Data-CORE]

Resources Available for Implementation (tentative)

- Volunteered time and resources provided by Working Group members, including in-kind contributions from GEO Members and Participating Organizations represented on the Data Sharing Working Group
- Activities related to the European GMES Delegated Act on data policy and the INSPIRE Directive
ID-02 Developing Institutional and Individual Capacity

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Capacity Building: Networking activities that specifically build individual, institutional and infrastructure capacity. Increased use of Earth observation in policy and decision making. Enhanced participation of developing countries in GEO and GEOSS.

User Engagement: Involvement of users in: reviewing and assessing requirements for Earth observation data, products and services; creating appropriate mechanisms for coordinating user requirements; utilizing data/information delivery systems; and capturing user feedback on an ongoing basis across Societal Benefit Areas. Increased use of geo-spatial data in all Societal Benefit Areas and in particular in developing countries.

Description

Enhance coordination of national and international capacity-building efforts to produce and use Earth observation and information. Increase the demand for day-to-day Earth observation and information across Societal Benefit Areas. Build national capacity in developing countries by enabling human, technical and institutional capacity for coordinating, accessing, using and sharing environmental data, information and services. Develop cross-border education and training across Societal Benefit Areas showing the short- and long-term benefits of Earth observation. Develop synergies, encourage cross-fertilization and address common challenges across capacity building initiatives.

Components

C1 Institutional Development

Leads

China (CRESDA), European Commission (EC FP7), France (FRB), Morocco (DMN), Nigeria (NASRDA), South Africa (Umvoto, andiswa@umvoto.com), United States (USAID) and CEOS (INPE)

Priority Actions

- Establish regional capacity-building networks: Organize and reinforce international networks (incl. training opportunity networks) for the use and provision of Earth observations. Improve coordination of these networks through the GEO Portal and GEONETCast. Capacity building networks include key institutions in data provision (e.g. space agencies) and academic higher-education institutions. Training opportunity networks rely on virtual and e-learning knowledge transfer

- Create conditions for expanding GEO capacity building activities and improving their effectiveness across Societal Benefit Areas: Build upon ongoing projects such as the GEO Network for Capacity Building (GEONetCab), the GEO capacity building initiative in Central Asia (SEOCA), OBSERVE and BalkanGEOonet projects in the Balkan region, ACQWA, enviroGRIDS, AFROMAISON; and existing networks such as AFRIMET, the Latin American Network of Climate Change Offices (RIOCC); and the Regional Gateway for Technology Transfer and Climate Change Action in Latin America and the Caribbean (REGATTA)

- Develop qualitative and quantitative Performance Indicators for measuring the efficacy of institutional and individual capacity building programs
C2 Individual Development

Leads
Brazil (INPE, hilcea@dpi.inpe.br), European Commission (EC FP7), France (FRB), Nigeria (NASRDA), United States (USAID), CEOS (NOAA) and WCRP (START)

Priority Actions

• Coordinate capacity building components across Societal Benefit Areas: Organize summer schools or training workshops within and/or across Societal Benefit Areas (and related areas), e.g. Disasters, Health, Energy, Climate, Agriculture, Forest Monitoring. Build upon ongoing regional activities such as the CLIVAR program for Latin America, and global activities such as the WMO/CGMS Virtual Laboratory on Education in Satellite Meteorology (VLab)

• Foster recognition of cross-border education: Bring together (i) providers of international (and cross-border) capacity building; (ii) experts in recognition (credential valuation and accreditation) and governance (quality assurance) of higher-education qualifications; and (iii) professionals from the Earth observation and information sectors – to exchange knowledge and propose solutions to the issues of recognition and exchange of cross-border/international education

• Develop open-source software and open systems: Encourage the development of open-source solutions across and along the Earth observation value chain – building upon existing efforts and drawing upon networks of Open Source Software (OSS) developers

• Develop adequate dissemination schemes that reflect the reality of limited bandwidth in developing countries. In collaboration with the CEOS Working Group on Capacity Building and Data Democracy (WGCapD), build upon the Data Democracy initiative (e.g. the Fundisa disk distribution to Africa) and support CBERS, GEONETCast, AgriCab, GEONetCab, EnerGEO and SERVIR training. Develop and sustain GEONETCast user community fora to connect current and prospective users of GEONETCast stations, providers and users of data and products

To Be Implemented in Connection with
All Work Plan Tasks

Resources Available for Implementation (tentative)

– European FP7 projects (funded by the European Commission):
 o AFROMAISON (March 2011-2014, 3 MEUR; Africa at meso-scale: Adaptive and integrated tools and strategies on natural resources management; http://www.afromaison.net/)
 o GEONetCaB (2009-2012; (Regional studies on earth observation markets and capacity building; http://geonetcab.espace-dev.fr/)
 o SEOCA (GEO capacity building in Central Asia; http://www.geo-seoca.net/),
 o CEOP–AEGIS, AGRICAB (A framework for enhancing EO capacity for Agriculture and Forest Management in Africa as a contribution to GEOSS)
 o OBSERVE (Strengthening and development of Earth Observation activities for the environment in the Balkan area; http://www.observe-fp7.eu/)
 o BalkanGEOnet (Balkans in Global Observation; http://www.balkangeo.net/)
– REGATTA project and fellowships (over 300) for courses in meteorology, co-funded by Spain
– CLIVAR - Climate Variability Research Program (http://www.clivar.org/)
– Brazil (INPE) activities for the development of free open-source geo-technologies (including interfaces in several languages, tutorials, training courses and materials)
– CEOS Working Group on Capacity Building and Data Democracy
– In-kind support from Morocco (DMN), Netherlands (ITC), South Africa (Umvoto), and Denmark (DMI)
ID-03 Science and Technology in GEOSS

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Science and Technology: Improved and new instrumentation and observation system design for in-situ, airborne, and space-based observation, benefiting from advances in science and technology. Increased accessibility of global sets of scientific data necessary for improved Earth System modelling in the different GEOSS Societal Benefit Areas. Increased accessibility of data and improved coordination and maintenance of observational systems through GEOSS are realized by the research community.

Description

Advance GEOSS through integration of innovations in Earth observation science and technology, also enabling the research community to fully benefit from GEOSS accomplishments. Promote research and development (R&D) in key areas of Earth sciences to facilitate improvements to Earth observation and information systems, and support the transition of systems and techniques from research to operations. Engage with a wide range of science and technology communities including individual scientists and their institutions, both public and private.

Components

C1 Engaging the Science and Technology (S&T) Community in GEOSS Implementation

Leads
European Commission (EC FP7), Spain (CSIC), and IEEE (hpplag@unr.edu)

Priority Actions

Implement the GEO Science and Technology Roadmap. In particular,

- Engage the science and technology community in the development of GEOSS: Develop a framework for the transition of relevant research infrastructures to sustained operation. Encourage the incorporation of new technology in observing systems. Assess the requirements for continuity and long-term monitoring of essential data. Support state-of-the-art technology in the GEOSS Common Infrastructure (GCI) and observation infrastructures. Promote registration within the GCI of key scientific data sets
- Develop incentives for science and technology communities: Devise a GEOSS Data Citation Standard, GEO Label, and portfolio of compelling examples illustrating the contribution of Science and Technology to GEOSS
- Establish links to major science and technology organizations and research institutions: Establish an interactive directory of major professional science and technology organizations. Inform organizations about GEO and GEOSS, establish a dialog and foster cooperation between GEO and major university networks
- Promote GEOSS in science and technology communities: Organize special sessions on GEOSS at major meetings. Implement a web-based interactive tool for the planning and documentation of GEO/GEOSS related presentations. Compile a slide library focused on science and technology
- Undertake a review of the GEO 2012-2015 Work Plan for scientific soundness

To Be Implemented in Connection with

All Work Plan Tasks

Resources Available for Implementation (tentative)
- European FP7 project EGIDA (1 MEUR, 2010 – 2012) and GeoViqua (for the development and implementation of a GEO Label)
- European GMES Research and Development projects
- In-kind contribution from IEEE
ID-04 Building a User-Driven GEOSS

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

User Engagement: Establishment of an agreed core set of essential environmental, geophysical, geological, and socio-economic variables needed to provide data, metadata and products in support of all GEOSS Societal Benefit Areas. Involvement of users in: reviewing and assessing requirements for Earth observation data, products and services; creating appropriate mechanisms for coordinating user requirements; utilizing data/information delivery systems; and capturing user feedback on an ongoing basis across Societal Benefit Areas. Increased use of geo-spatial data in all Societal Benefit Areas and in particular in developing countries.

Description

Advance user-oriented perspectives and needs in GEOSS development and enable the development of Communities of Practice. Collect and integrate user-oriented feedbacks on products, tools, data access and delivery. Foster and promote applications of Earth observation and information to decision making. Support the sustained use of these applications by end-users, which can demonstrate value, encourage broader use, and build demand for Earth observations. Show the benefits of GEO and GEOSS to policy makers, scientific and technological communities, and the public.

Components

C1 GEOSS-Wide Activities for a User-Driven GEOSS

Leads
Germany (University of Bonn), United States (NASA) and IEEE (ells@uwaterloo.ca)

Priority Actions

• Support user communities through GEO Communities of Practice: Encourage the development, identification, or incorporation of various communities into the GEOSS framework – to enhance the functionality and usability of GEOSS. Mentor the GEO Communities of Practice
• Identify user needs and requirements: Characterize user needs for Earth observations, information and user-oriented tools. Ensure GEO engages a broad range of user types, and assist users in utilizing GEOSS and providing feedback. Focus on Earth observations priorities, user-type analysis, visualization and analysis tool needs, and user-oriented handbooks
• Foster GEOSS applications and societal benefits: Broker connections between experts and users. Identify best practices in applications, and enable GEO efforts to document societal benefits
• Develop GEOSS Professorships: Create GEOSS industrial professorships to demonstrate the benefits of using Earth observation/information within Societal Benefit Areas. Professorships would include research, training and diffusion activities and be granted by companies and/or organizations

C2 Outreach and Awareness Raising

Leads
France (FRB), Nigeria (NASRDA), Spain (CSIC) and IEEE (vesna.bengin@gmail.com)

Priority Actions

• Show the benefits of Earth observation and information through the identification and dissemination of success stories in language that can be understood by all, specifically decision- and policy-makers
• Maintain a GEOSS-focused web-based magazine for the general public, non-technical managers and decision-makers. Expand on existing web-pages to incorporate more material from developing countries
• Organize user-oriented workshops for GEOSS outreach and feedback. Provide avenues for user inputs into GEOSS requirements and feedback on the operational aspects of GEOSS

C3 Global Environment Information Platforms

Leads
EEA (bert.jansen@eea.europa.eu)

Priority Actions
• Foster the use of the data, tools and services freely accessible via the Eye-on-Earth platform, a global public environment information platform based on a non-proprietary agreement using cloud computing and advanced Geographic Information Systems tools
• Encourage researchers, global citizen-science and community-based environmental groups to use GEOSS through a number of user-friendly open applications, including advanced Geographic Information Systems and mapping tools, and a market-place for data – all freely accessible via the Eye-on-Earth platform
• Support national and regional environmental reporting through the Eye-on-Earth platform and the GEOSS Common Infrastructure, for instance real-time (or near-real-time) data for air quality and recreational (beach) water quality (see also HE-01)
• Develop use-cases to support key user-communities of GEOSS and increase the delivery of societal benefits

To Be Implemented in Connection with
All Work Plan Tasks

Resources Available for Implementation (tentative)
- European GMES User Forum, and other European user structures
- US Integrated Ocean Observing System (IOOS)/NOAA
- US EPA Public Health Protection at Beaches Program and Real-time Air Quality Data Program
- Various projects (e.g. funded under FP7) that take part in organization of workshops
- Earthzine: Financial support from USA (NASA) and others. In-kind support from IEEE
- EEA global public environment information platform “Eye on Earth”. In kind support from related EEA teams. Contributions from ESRI and Microsoft. EuroGEOSS project and follow-on activities funded through EC (to help make interfaces with Eye on Earth)
ID-05 Catalyzing Resources for GEOSS Implementation

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Capacity Building: Leveraging resources for Earth observation capacity building efforts. Ensuring the engagement and committed involvement of resource providers in the GEO capacity building process.

Science and Technology: Improved and new instrumentation and observation system design for in-situ, airborne, and space-based observation, benefiting from advances in science and technology. Increased accessibility of global sets of scientific data necessary for improved Earth System modelling in the different GEOSS Societal Benefit Areas.

Description

Mobilize resources for GEOSS in the areas of capacity building (individual, institutional, infrastructure) and research and development (R&D). Work to strengthen links between users and donor communities, involving resource providers such as national and international programmes. Encourage national governments and international organizations to integrate GEOSS science and technology needs in their R&D programmes. Ensure wide circulation of information on funding-opportunities within the GEO community.

Components

C1 Resource Mobilization for Capacity Building (individual, institutional and infrastructure)

Leads

France (FRB), Netherlands (ITC, m.noort@itc.nl) and Spain (AEMET)

Priority Actions

• Identify opportunities in existing programmes and mechanisms for resourcing capacity building activities
• Build on the GEONETCab project to ensure active brokering between resource providers and GEOSS needs
• Communicate GEOSS agenda to funding agencies and resource providers. Identify windows of opportunity (e.g. conferences, workshops) for interacting with groups of donors
• Promote “Earth Observations in Decision Support Projects”. Support the various phases of project development: Proposal Solicitation, Project Brokering, Donor Coordination, Applications, Showcases, Tracking, and Outreach
• Produce specific examples of resources leveraged across a range of user types and Societal Benefit Areas

C2 Resource Mobilization for Research and Development (R&D)

Leads

European Commission (EC FP7), France (FRB) and Norway (NSC, bentelil@hotmail.com)

Priority Actions

• Establish a dialogue between GEO and funding agencies for the research and development needed to fully develop GEOSS and exploit the benefits of GEOSS
• Develop means to (i) communicate GEOSS Science & Technology needs; (ii) match research projects with available funding programs; and (iii) support effective transition from research to operations

To Be Implemented in Connection with All Work Plan Tasks

Resources Available for Implementation (tentative)
- European FP7 projects EGIDA (1 MEUR, 2010–2012) and GEONetCab (1 MEUR, 2010–2012)
- In-kind contribution from Norway
3 INFORMATION FOR SOCIETAL BENEFITS

SB-01 Oceans and Society: Blue Planet

Task implementation is supported by the Coastal Zone Community of Practice and Ocean Community of Practice

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Climate: Improved scientific understanding, modelling and prediction of climate. Accessibility of all the observational data needed for climate monitoring and services in support of adaptation to climate variability and change. Availability of all Essential Climate Variables needed by the WCRP, the IPCC and the UNFCCC.

Ecosystems: Increased operational monitoring of major marine and coastal ecosystems on an annual basis including properties such as extent, water temperature, salinity, pH and pCO2, phytoplankton species composition and productivity and marine resource stocks, based on remote sensing and sampled in-situ observations using internationally agreed standards.

Agriculture: Improved collaboration and coordination on the use and applications of Earth observations for fisheries and aquaculture.

Biodiversity: Increased routine collection of long term in-situ and remotely sensed biodiversity observations. Increased information sharing on biodiversity conservation and sustainable use of biodiversity resources. Increased availability of biodiversity information necessary to respond to and support related topics (ecosystems, health, climate, etc).

Description

Provide sustained ocean observations and information to underpin the development, and assess the efficacy, of global-change adaptation measures (such as those related to vulnerability and impacts of sea-level rise). Improve the global coverage and data accuracy of coastal and open-ocean observing systems (remote-sensing and in-situ). Coordinate and promote the gathering, processing, and analysis of ocean observations. Develop a global operational ocean forecasting network. Establish a global ocean information system by making observations and information, generated on a routine basis, available through the GEOSS Common Infrastructure. Provide advanced training in ocean observations, especially for developing countries. Raise awareness of biodiversity issues in the ocean.

Components

C1 Global Ocean Information Coordination and Access

Leads

Germany (Univ. Bremen), Spain (CSIC), CEOS (JRC) and IOC (a.fischer@unesco.org)

Priority Actions

- Promote the implementation of the Global Ocean Observing System (GOOS), a scientifically designed international system for gathering, processing, and analyzing ocean observations, and distributing data products
- Support and provide access to GOOS products which describe the state of the ocean globally at regular intervals. In particular, develop access to GOOS Essential Ocean Variables datasets through the GEOSS Common Infrastructure building upon the GEOWOW project
• Continue to establish data management and communications systems (e.g. Regional Alliances) for interoperability among monitoring systems and data integration. Promote the development of internationally- and intergovernmentally-agreed coastal ocean observation standards, data sharing, and data management arrangements

• Establish a Global Ocean Information System (GOIS), building on existing capabilities such as GMES MyOcean and forging close links between data providers (in situ and satellite-based) which already have effective monitoring, forecasting, and other information tools available, and potential users

• Promote activities of the International Ocean Colour Coordinating Group (IOCCG) and applications of remotely-sensed ocean-colour data through coordination, training, liaison between providers and users, advocacy and provision of expert advice. Coordinate with CEOS climate activity plans to optimize its marine elements

• Develop vulnerability and integrated management of coastal zones in order to inventory, protect, and monitor coastal lands in the context of climate change and associated risk. Form links with disaster management activities (see also DI-01)

• Provide advanced training in ocean observations and services, especially for personnel from developing countries and economies in transition, through a series of fellowship schemes, pilot projects (e.g. MARINEMET, EAMNet) and a Centre of Excellence

C2 Operational Systems for Monitoring of Marine and Coastal Ecosystems

Leads
Canada (POGO, tplatt@dal.ca), Spain (CSIC) and CEOS (ESA)

Priority Actions
• Support the implementation of OceanSITES, a worldwide system of deepwater time-series stations, featuring capabilities such as surface moorings (observing air-sea interactions), and subsurface moorings (that can carry instrumentation down to the sea floor). OceanSITES complement satellite imagery and Argo float data by adding dimensions of time and depth

• Promote rapid development of a global high frequency radar network to measure coastal surface currents. High frequency radar is recognized as a cost-effective solution to augment in-situ measurements and provide increased spatial and temporal resolution

• Establish a global coastal network of observations and modeling that target sentinel and reference sites for rapid detection of changes in ecosystem states caused by land-based sources of pollution, fishing and climate change

• Promote the Chlorophyll Global Integrated Network (ChloroGIN) project which coordinates in-situ measurement of chlorophyll and related bio-optical properties of the ocean, in combination with satellite derived estimates of the same. ChloroGIN is a network of regional networks

• Develop and expand global plankton biodiversity monitoring, building upon 80 years of phytoplankton and zooplankton biodiversity data obtained in the North Atlantic by means of the “Continuous Plankton Recorder” survey (see also BI-01)

• Support the development of the “International Quiet Ocean Experiment” to quantify global ocean sound (natural/anthropogenic) and measure the effects of changing sound exposure on marine life. Implement essential acoustical applications within existing ocean observing systems (e.g. GOOS)

• Fully engage with the four ocean-related CEOS Virtual Constellations: Ocean Surface Vector Wind, Ocean Surface Topography, Ocean Colour Radiometry, and Sea Surface Temperature (see also IN-01)
C3 A Global Operational Ocean Forecasting Network

Leads
United Kingdom (Met Office, mike.bell@metoffice.gov.uk)

Priority Actions

- Support the continuation of the GODAE OceanView international programme for the consolidation and improvement of global and regional ocean forecasting systems, including development and scientific testing of the next generation of systems extending from open-ocean into shelf-seas and coastal waters, covering biogeochemistry and ecosystems, and using multi-model ensemble forecasting techniques
- Build upon forecasting systems, information and services developed in the framework of the GMES projects MyOcean and MyOceanII
- Establish a global operational oceanography network, connecting advanced operational forecasting centres in developed countries and quasi-operational centers in Asia, Africa and Latin America. Promote and extend international collaboration, and establish regional cooperation projects between advanced and less-developed operational centers
- Support assessment of observing system impact on ocean forecasting for the various components of the international ocean observation system
- Support events which provide a platform for communication and collaboration between national ocean forecasting systems to allow wide exchange of knowledge and expertise. Promote initiatives aiming to exploit operational ocean forecasting services for greater societal benefit

C4 Applications of Earth Observations and Information to Sustainable Fishery and Aquaculture Management

Leads
Canada (Dalhousie University, shubha@dal.ca) and Nigeria (NASRDA/NCRS)

Priority Actions

- Facilitate the application of rapidly-evolving satellite technology to fish harvesting and fish health assessment. Accelerate the assimilation of Earth observation into fisheries research and ecosystem-based fisheries management on a global scale, through international coordination and outreach. Support the development of the Societal Applications in Fisheries and Aquaculture using Remotely-Sensed Imagery (SAFARI) project
- Design and implement a suite of ecological indicators with a view to detecting changes in ocean ecosystems (e.g. due to climate change, overfishing). Design and implement indicators responsive to seasonal and inter-annual changes in ocean ecosystems (see also EC-01)

To Be Implemented in Connection with

DI-01 Informing Risk Management and Disaster Reduction
CL-01 Climate Information for Adaptation
CL-02 Global Carbon Observation
EC-01 Global Ecosystem Monitoring
BI-01 Global Biodiversity Observation (GEO BON)

All “Infrastructure” and “Institutions and Development” Tasks
Resources Available for Implementation (tentative)

- European FP7 project “GEOSS interoperability for Weather, Ocean and Water, GEOWOW” (Ocean Component, 2011-2014); GMES marine services (MyOcean II)
- Canadian (CSA) Project FARO (Fisheries Applications of Remotely Sensed Ocean Colour)
- Contributions from ChloroGIN Network members in Asia, the Americas, Europe and Africa
- IOC regular annual budget support for GOOS
- Multilateral member states implementation of GOOS
- USA (NOAA) annual funding for the climate module of GOOS
SB-02 Global Land Cover

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Data Management: Preparation of and access to, among Member and Participating Organization communities, global and regional information encompassing cross-cutting data sets such as land-cover and land use information

Climate: Availability of all Essential Climate Variables needed by the WCRP, the IPCC and the UNFCCC

Ecosystems: Increased operational monitoring of major ecosystems on land on an annual basis, including properties such as land-cover type

Agriculture: Improved collaboration and coordination on the use and applications of Earth observations for land-cover mapping.

Description

Provide a suite of global land-cover and land-cover change datasets, based on improved and validated moderate resolution land-cover maps. Develop <50m global land-cover and land-cover change data sets, based on international community consensus and including a robust accuracy assessment. Improve the use of time-series products to characterize the nature and extent of land-cover change and dynamics.

Components

C1 Global Land Cover Datasets and Service

Leads

China (NSDI, chenjun@nsdi.gov.cn), Canada (Ryerson University), Spain (IGN-CNIG, Spain), USA (USGS), ESA

Priority Actions

- Address operational issues related to global land cover/change, including data processing, product generation, updating, and service; with special emphasis on the use of fine resolution data
- Develop a global moderate-resolution (<50m) land-cover monitoring system. Focus on the delivery of: (i) a global geospatial database of land-cover types and associated attributes; (ii) frequent (up to annual) updating of the database by capturing land conversions and ecosystem disturbances; (iii) periodic global land-cover maps, statistics, and analyses; and (iv) land-cover products at the global scale (e.g. assessments of carbon storage or habitat conditions)
- Enhance, and continue to provide access to, historical land-cover relevant imagery and global high-resolution coverage obtained through international acquisitions coordination. Support retrospective processing of historical satellite data archives for land-cover mapping and change analyses (e.g. GLOBCOVER and MODIS land-cover)
- Build international consensus and generate products driven by requirements for land-cover as an Essential Climate Variable. Ensure coordinated operations of existing and new moderate resolution (<50m) satellites for land-cover mapping and monitoring, in particular the European GMES Sentinels, US Landsat, and China’s resource satellites
- Design a web portal connecting all major global land cover websites to (i) form a single access point and (ii) coordinate and facilitate data sharing (images, samples, etc.) and accuracy assessment of products (in collaboration with C3)
C2 Global Land Cover Validation and User Engagement

Leads
China (NSDI), EEA (chris.steenmans@eea.europa.eu), GTOS (GOFC-GOLD)

Priority Actions
• Outline reliable and accepted methods for the validation of global land cover datasets at all spatial resolutions (validation includes data collection, sampling design, observation analysis, and accuracy assessment)
• Support existing initiatives for a sustained reference data collection network in view of the application of standardized validation protocols. In particular, support the development of a universal validation site sampling design.
• Test approaches for augmenting existing global validation data with regional and national data. Analyze and harmonize available land cover validation databases for integration and wider use. Advocate for the development of the Land Cover Classification System (LCCS)
• Facilitate the exchange and management of validation data and explore new ways of capturing (ground truth) reference information (e.g. crowd sourcing, citizen science), as well as visualizing and distributing spatial data for validation. This may include new global public information services for collecting and sharing environmental data (e.g. Eye on Earth; see ID-04)

C3 Global Land Cover Methodology and Capacity Building/Outreach

Leads
China (Central South University, Tsinghua University), Greece (EARSel), Sweden (KTH), Japan (KEIO University), GTOS (GOFC-GOLD, martin.herold@wur.nl)

Priority Actions
• Develop methods, recommendations for mapping specifications, land cover standards (e.g. legends and definitions), and a coordinated web portal linking existing national and regional land cover data and resources (including training and e-learning material); in collaboration with C1
• Address cutting-edge technological issues related to global land cover/change, such as utilization of new sensor data, longer and denser time-series data, and SAR data (e.g. ERS-1/2, ENVISAT, Sentinel-1)
• Understand the facts and processes of land cover in different regions, such as urban/ rural areas, pasture land, coastal zones, and modeling the impact/influence global/local changes
• Improve national capacity to produce regional and national land cover products by growing the size and expertise of land cover groups around the world
• Enhance national capacity to provide feedback (up-to-date, homogenized and coordinated information) to fine tune global land cover products and guarantee good-quality monitoring
• Raise awareness about global land cover products, and services and demonstrate the relevance of (global) land cover products to national strategic development planning

To Be Implemented in Connection With
SB-03 Global Forest Observation
SB-04 Global Urban Observation and Information
SB-05 Impact Assessment of Human Activities
CL-01 Climate Information for Adaptation
AG-01 Global Agricultural Monitoring and Early Warning
EC-01 Global Ecosystem Monitoring
All “Infrastructure” and “Institutions and Development” Tasks
Resources Available for Implementation (tentative)

- US resources available to create global 30m land-cover products from Landsat data
- China funding for a 3-year (2010-2012) project to complete a global 30m land-cover map; related work conducted by various Chinese organizations led by NASG
- ESA GLOBCOVER and land-cover climate change initiative (1.8 MEUR for 3 years) to respond to Essential Climate Variable requirements and provide land-cover products to the climate community
- GOFC-GOLD global land-cover validation and harmonization initiative funded through support by ESA, USA (NASA), and Canada (Canadian Space Agency)
- ISPRS support for the benchmarking and validation of global land-cover mapping through its working groups
- FAO support for validation activities and provision of software, standards and training (e.g. validation against existing FAO land-cover datasets; utilization with free access of any FAO software for segmentation and labeling; development of ADG (Advanced Database Gateway) interface with the GEOSS Common Infrastructure)
- EARSeL support for interactions with the European remote sensing scientific community, and capacity building and outreach activities throughout Europe via its Special Interest Groups and workshops
- EC Joint Research Centre (JRC) activities to (i) capture land-cover conversions and ecosystem disturbances at 30m resolution over Africa; (ii) validate test sites over Africa (checked with a network of African specialists); and (iii) define and process land cover standards and change in the African region
- European GMES service geoland-2
- EEA land-cover accounts (European case study) and classification (GlobCorine)
- Additional funding is required for aforementioned Priority Actions
SB-03 Global Forest Observation

Task implementation is supported by the Forest Community of Practice

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Climate: Development and facilitation of a comprehensive (atmosphere, ocean, land) global carbon observation and analysis system in support of monitoring based decision-making and related environmental treaty obligations.

Agriculture: Increased use of Earth observing capabilities and supporting applications systems to produce timely, objective, reliable, and transparent forest statistics and information at the national and regional level. Improved collaboration and coordination on the use and applications of Earth observations for forestry.

Ecosystems: Development of tools for decision making in support of the assessment, protection and sustainable management of ecosystems. Increased operational monitoring of major ecosystems on land on an annual basis, including properties such as (…) biomass and carbon estimates of vegetation and soils based on remote sensing and sampled in-situ observations using internationally agreed standards.

Description

Build upon and continue the science and demonstration activities performed under the GEO Forest Carbon Tracking (FCT) initiative. Support the worldwide development of national forest information systems for improved forest management and ecosystem & biodiversity monitoring. Focus initially on REDD+ Measurement, Reporting and Verification (MRV), gradually connecting forest information systems to the global carbon observation and analysis capabilities (see CL-02). Coordinate satellite data acquisition over the global forest (with CEOS agencies and commercial providers) and define methodological guidelines for the key components of the MRV process (e.g. in-situ measurements and standards, satellite data processing, forest information product development, validation and accuracy metrics, models for carbon change assessment). Ensure comprehensive coverage and continuity of data, and facilitate countries’ access to data, tools and methodologies. Ensure continuous update of the technical basis for FCT monitoring. Support the long-term observational needs of the UNFCCC and engage with other key users such as the IPCC.

Components

C1 Forest Carbon Tracking Activities for Observational and Methodological Guidelines

Leads

Australia (CSIRO, alex.held@csiro.au), Germany (Jena University, University of Freiburg), GTOS (GOFC-GOLD), Japan (JAXA), Netherlands (Wageningen University), Norway (NSC), United States (USGS) and CEOS (CSIRO, ESA, NSC)

Priority Actions

- Through National Demonstrators activities, develop methods and protocols for data collection, processing and integration. Develop methods for forest carbon tracking. As of June 2011, National Demonstrators include Australia (Tasmania), Brazil, Cameroon, Colombia, Democratic Republic of Congo, Guyana, Indonesia (Borneo and Sumatra), Mexico, Nepal, Peru, and Tanzania
- Promote coordinated research and development needed for continuous improvement

Leads
Netherlands (Wageningen University), Norway (NSC, per.erik.skrovseth@spacecentre.no), United States (Smithsonian Institution), and CEOS (CSIRO, ESA)

Priority Actions

• Ensure sustained availability of satellite and ground observations in support of national forest information systems. Develop a long-term data acquisition strategy and a 5-year plan for space data coverage and continuity in support of global forest observation requirements. Set up a framework for engaging data providers (CEOS agencies and commercial providers). Coordinate and provide regular and routine observations that are essential for effective reporting. Support the collection of, and access to, in-situ data

• Support countries in their use of observations in national forest information systems – respecting national choices of data and tools. Consolidate, review and issue a set of GEO guidelines/best practices on consistent and comparable methods for individually developed national systems. Work with countries to identify best implementation approaches. Develop tailored national capacity building plans to help governments implement national forest information systems

To Be Implemented in Connection with
SB-02 Global Land-Cover
SB-05 Impact Assessment of Human Activities
EN-01 Energy and Geo-Resources Management
CL-02 Global Carbon Observation and Analysis
EC-01 Global Ecosystem Monitoring
AG-01 Global Agricultural Monitoring and Early Warning
All “Infrastructure” and “Institutions and Development” Tasks

Resources Available for Implementation (tentative)

- CEOS space agencies’ missions and related data acquisition
- European FP7 projects (RECOVER, REDDAF, REDD-FLAME, REDDINESS, GEOCARBON, and AGRICAB), and GMES services (global land component of geoland-2, and high resolution forest layer of GMES Initial Operations GIOland)
- US SilvaCarbon program
- In-kind and financial contributions from Australia, Brazil, Canada, EC, France, Japan, Netherlands, Norway, USA, CEOS, FAO
- Engineering and managerial resources needed to define, develop and deliver forest services to countries will be identified in the Global Forest Observation Initiative (GFOI) Implementation Plan
SB-04 Global Urban Observation and Information

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Data Management: Preparation of and access to, among Member and Participating Organization communities, global and regional information encompassing cross-cutting data sets. Enhanced information extraction from historical, current and future source data.

Disasters: More effective access to observations and related information to facilitate warning, response and recovery to disasters.

Health: Access to improved environmental information and tools to support the global community of human health and environment experts.

Climate: Accessibility of all the observational data needed for climate monitoring and services in support of adaptation to climate variability and change.

Ecosystems: Increased operational monitoring of major ecosystems on land on an annual basis.

Water: Routine, reliable production of “watershed” and human health indicators from satellite data, surface and subsurface data, and data assimilation capabilities.

Description

Improve the coordination of urban observations, monitoring, forecasting, and assessment initiatives worldwide. Support the development of a global urban observation and analysis system. Produce up-to-date information on the status and development of the urban system – from local to global scale. Fill existing gaps in the integration of global urban land observations with (i) data that characterize urban ecosystems, built environment, air quality and carbon emission; (ii) indicators of population density, environmental quality, quality of life; and (iii) patterns of human environmental and infectious diseases. Develop innovative concepts and techniques in support of effective and sustainable urban development.

Components

C1 Global Urban Observation and Information

Leads

China (Tsinghua University), Germany (DLR), United States (Indiana State University, NASA, NOAA, qweng@indstate.edu) and IEEE (University of Pavia)

Priority Actions

• Improve global coverage and data accuracy of urban observing systems through integrating satellite data of different sources, resolutions, and sensors with in-situ field measurements
• Document requirements for global urban monitoring and assessment in terms of data products and expectations for data validation, archiving, update and sharing
• Develop a global urban observing and research network using the mechanism of GEO, establishing regional alliances and encouraging the establishment of a Program Office
• Create a global urban morphological database for urban monitoring/assessment and climate modeling to better understand the impacts of global climate change on urban areas
• Conduct global urban analyses, including time-series for assessing mega-cities development (e.g. urban sprawl) and a world-wide inventory of human settlements based on satellite data (e.g. “Global Urban Footprint” products and data base; see also IN-02)
• Conduct urban analyses linking Earth observation products with socio-economic and demographic
data, to improve knowledge of urban environments, air quality and carbon emissions, population
density, quality of life, and environmental/infectious diseases (see also HE-01)
• Conduct surveys to assess the magnitude and dynamics of the urban “heat island” effect,
particularly for cities in developing countries, and identify environmental impacts of “Megacities”
(populations of 10,000,000 or more) as they increase in number around the world, and for
evaluation of these impacts at the local, regional, and global scales

To Be Implemented in Connection with
SB-02 Global Land-Cover
SB-05 Impact Assessment of Human Activities
DI-01 Informing Risk Management and Disaster Reduction
HE-01 Tools and Information for Health Decision Making
HE-02 Tracking Pollutants
EN-01 Energy and Geo-Resources Management
CL-01 Climate Information for Adaptation
CL-02 Global Carbon Observation and Analysis
WA-01 Integrated Water-Cycle Information
EC-01 Global Ecosystem Monitoring
All “Infrastructure” and “Institutions and Development” Tasks

Resources Available for Implementation (tentative)
− Research from the German Remote Sensing Data Center (DFD) and German Aerospace Center
(DLR) in support of environmental, urban and spatial planning by means of remote sensing
techniques and Earth observation based geo-information products
− Related activities of the US Geological Survey (USGS) Earth Resource Observation and Science
Center (EROS)
− European GMES Urban Atlas; Urban Heat Island multi-mission scenario from the European FP7
project “Space-Data Routers” led by EEA
− Additional in-kind contributions from the USA (Indiana State University, NASA) and China
(Tsinghua University, NSMC), Italy (University of Pavia), IEEE Geoscience and Remote Sensing
Society
− Data, models, and related resources associated with US NASA Earth Science research and Earth
observing remote sensing platforms such as Terra and Aqua, and the 40-year availability of
continuous Landsat data
SB-05 Impact Assessment of Human Activities

Task implementation is supported by the Energy Community of Practice

Related GEOSS Strategic Targets (*from GEO-VI Document 12 Rev1*)

User Engagement: Increased use of geo-spatial data in all Societal Benefit Areas and in particular in developing countries.

Health: Access to improved environmental information and tools to support the global community of human health and environment experts. Applying outcomes from other Societal Benefit Areas to improve health and well-being.

Energy: Significant increase in use of Earth observations by all sectors (biomass, fossils, geothermal, hydropower, nuclear, ocean, solar and wind) for improved environmental, economic and societal impact assessments of energy exploration, extraction, conversion, transportation and consumption.

Water: Increased availability of data and information, including quantity and quality of both surface and groundwater, to support a water cycle decision making system.

Ecosystems: Increased operational monitoring of major ecosystems on land on an annual basis. Increased operational monitoring of major marine and coastal ecosystems on an annual basis.

Description

Foster the use of Earth observation and information for environmental, economic and societal impact assessment. Develop datasets, tools and services for impact monitoring and prediction across Societal Benefit Areas. In particular, develop a set of tools to process and analyze datasets, either separately or in combination, including geophysical models. Identify user-defined data requirements for impact monitoring and promote related in-situ as well as remotely-sensed observations.

Components

C1 Tools and Information for Impact Assessment and Energy Policy Planning

Leads

European Commission (EC FP7, martijn.schaap@tno.nl), Germany (DLR) and United States (DOE)

Priority Actions

- Develop a modelling platform that will enable planners and governments to forecast and monitor the environmental impact of changes in the energy mix
- Integrate Earth observation data with state-of-the-art modelling tools to calculate socio-economic impacts and environmental costs
- Foster the use of Earth observation and information in the context of “Certification of Bio-energy”. Electricity produced from bio-energy may be certified as “green energy” provided the producer can prove that the related plantations (e.g. oil palm, rape seed) do not originate from the destruction of valuable natural resources (e.g. rain forest)
C2 Impact Monitoring System for Geo-Resource Exploration and Exploitation

Leads
France (BRGM, s.chevrel@brgm.fr), Germany (DLR), and United Kingdom (BGS)

Priority Actions
• Develop new tools for impact monitoring of mining operations using Earth observations
• Integrate information from in-situ, airborne and satellite observation (through data assimilation) to provide impact diagnostics
• Identify and implement strategic measures for the competitive, reliable and sustainable management of geo-resources exploitation and treatment of re-usable materials, based on innovative monitoring and accounting methodologies (see also EN-01)
• Integrate often-sectoral monitoring approaches (and corresponding impact analysis) into a coherent approach, based on innovative Earth observation techniques (related to space-borne, airborne and ground-based sensor systems)

To Be Implemented in Connection with
SB-04 Global Urban Observation and Information
HE-01 Tools and Information for Health Decision-Making
EN-01 Energy and Geo-Resources Management
HE-01 Tools and Information for Health Decision Making
HE-02 Tracking Pollutants
CL-01 Climate Information for Adaptation
CL-02 Global Carbon Observation and Analysis System

All “Infrastructure” and “Institutions and Development” Tasks

Resources Available for Implementation (tentative)
European FP7 projects: EnerGEO (funded until 2013, overall funding 7MEUR), ImpactMIN, EO-MINERS
DISASTERS
Reducing loss of life and property from natural and human-induced disasters

DI-01 Informing Risk Management and Disaster Reduction

Task implementation is supported by the Geohazards Community of Practice and Coastal Zone Community of Practice.

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Disasters: Development of multi-hazard and/or end-to-end approaches, as appropriate to meet the needs for disaster risk reduction, preparedness and response in relevant hazard environments. More timely dissemination of information from globally-coordinated systems for monitoring, predicting, risk assessment, early warning, mitigating, and responding to hazards at local, national, regional, and global levels. Increased communication and coordination between national, regional and global communities in support of disaster risk reduction, including clarification of roles and responsibilities and improved resources management. Improved national response to natural and man-made disasters through delivery of space-based data, resulting from strengthened International Charter on Space and Major Disasters. Improved use of observations and related information to inform policies, decisions and actions associated with disaster preparedness and mitigation. Support to the successful implementation of the Hyogo Framework for Action 2005-2015.

Description

Improve disaster risk management and reduction by providing timely information relevant to the full cycle of disaster management (mitigation, preparedness, warning, response and recovery). Adopt a multi-hazard end-to-end approach to ensure that relevant Earth observations and information effectively reach decision-makers and the public. Focus on three main areas: (1) Provide support to operational systems and conduct gap analyses in order to identify missing data, system gaps, and capacity gaps; (2) Enable and inform risk and vulnerability analyses; and (3) Develop regional end-to-end systems with a focus on building institutional relationships.

Components

C1 Disaster Management Systems

Leads

China (BNU), European Commission (EC FP7), Nigeria (NASRDA), Spain (CSIC), United States (NASA), CEOS (CSA, guy.seguin@asc-csa.gc.ca) and ESA

Priority Actions

- Improve access to information produced through key disaster management mechanisms such as the International Charter on Space and Major Disasters, Sentinel Asia, GMES Emergency Management Services, and SERVIR
- Promote quick and easy access to in-situ data and reference maps required in case of emergency. Integrate baseline geographic information and reference maps with real-time data from satellite or in-situ platforms into online Graphical User Interface and Decision Support System tools
- Make information related to environmental risk and vulnerability easily accessible to a wide range of decision-makers through a centralized platform. Build upon the South African Atlas (based on a spatial database system and a repository of global-change related information) and the Chinese disaster assessment system (based on Geographic Information Systems)
• Enhance the use of satellite data for disaster management, based on lessons-learned and experience from countries and organizations, and develop best practice guidelines for technical and procedural cooperation in satellite-based emergency mapping

• Review global and regional disaster risk management systems, such as the Wildland Fire Early Warning system, with a view to develop an end-to-end approach. Perform a gap analysis considering data, metadata, systems, and capacity to cover all phases and types of disasters (building upon existing analyses)

C2 Geohazards Monitoring, Alert, and Risk Assessment

Leads
China (BNU, CAS, CEA), Germany (GFZ Potsdam), Italy (EUCENTRE, fabio.dellacqua@unipv.it), Nigeria (NASRDA), CEOS (CSA, NASA) and ESA

Priority Actions
• Apply a fully integrated approach to geohazards monitoring, based on collaboration among existing networks and international initiatives, using new instrumentation such as in-situ sensors, and aggregating space (radar, optical imagery) and ground-based (subsurface) observations. Develop open comprehensive natural-hazards datasets, initially focusing on selected targets (e.g. Supersites)
• Support the establishment of Supersites and Natural Laboratories. Provide an electronic infrastructure allowing easy access to data (space & in-situ) and a wide range of tools, and a platform for on-line collaboration. Develop a consolidated Supersites Strategic Plan (covering space, ground, infrastructure meta-data, processing and data dissemination)
• Enhance global earthquake and volcano monitoring, alert, and damage assessment. Improve the global and regional coordination of seismographic networks. Enable rapid access to waveform and space-borne (e.g. optical, radar) data for early warning, rapid shaking assessment and rapid damage assessment
• Support global earthquake risk assessment. Improve global standards and establish regional programs for hazard and risk assessment in a global framework. Support the implementation of the Global Earthquake Model initiative (GEM)
• Develop large-area vulnerability modeling and mapping using novel algorithms and methodologies based on Synthetic Aperture Radar (SAR) and optical satellite data
• Support tsunami early warning and hazards assessment. Promote real-time data sharing in particular seismic and sea-level (deep-ocean and tide-gauge data). Enable and develop a global tsunami hazard map through provision of bathymetry and topography data. Build on existing systems such as the German Indonesian Tsunami Early Warning System (GITEWS) and the European Tsunami Alerting Device (TAD)

C3 Regional End-to-End Systems

Leads
Canada (CSA), CEOS (NASA, stuart.w.frye@nasa.gov) and CMO (CIMH)

Priority Actions
• Implement regional and cross-cutting end-to-end projects. Develop natural-risk decision-support tools and applications supporting the full cycle of disaster management, especially for developing countries. Support the implementation of the GEO Caribbean Satellite Disaster Pilots and Sensor Web applications in Namibia
• Develop a world wide scheme of regional end-to-end systems and identify leading implementation entities for each region, in synergy with existing ones (e.g. Sentinel Asia, GMES)
• Identify locations for tandem centers of excellence in developed and developing regions, and initiate the formation of these centers

To Be Implemented in Connection with
SB-01 Oceans and Society: Blue Planet
SB-04 Global Urban Observation and Information
HE-01 Tools and Information for Health Decision Making
CL-01 Climate Information for Adaptation
WA-01 Integrated Water Information
WE-01 High-Impact Weather Prediction
AG-01 Global Agricultural Monitoring and Early Warning
All “Infrastructure” and “Institutions and Development” Tasks

Resources Available for Implementation (tentative)
- ESA-funded review for improving access to the International Charter Space and Major Disasters in Africa
- In-kind contributions from Italy (University of Pavia), ESA, UNAVCO, USA (University of Miami), and several space agencies
- European Plate Observing System (EPOS; www.epos-eu.org) for integrating research infrastructures in solid Earth Science. EPOS as a regional federation helps promote Supersites
- CEOS support for satellite data and related systems gap analysis
- Caribbean Satellite Disaster Pilot and Namibia Flood project co-funded by Canada (CSA), USA (NASA), and others
- Related activities of the Chinese Academy of Disaster Reduction and Emergency Management (http://adrem.org.cn/). GIS-based disaster assessment system covering earthquake, flood, landslide, debris flow, forest fire, and tsunami
- SERVIR regional visualization and monitoring system (http://www.servir.net) supported by USA (NASA, USAID)
- Sentinel Asia Geographic Information System catalogue maintained by Japan (JAXA) (https://sentinel.tksc.jaxa.jp/sentinel2/topControl.action)
- Satellite constellations committed to provide data through the International Charter in case of major disasters
- International Charter Space metadata catalogue maintained by France (CNES) (http://www.disasterschartercatalog.org)
- Supersites Web Portal (http://supersites.earthobservations.org) including ESA’s Virtual Archive cloud infrastructure
- Global Seismographic Network (GSN; http://www.iris.edu/hq/programs/gsn)
- Global Earthquake Model (GEM) facility (http://www.globalquakemodel.org/model-facility), including the GEM’s risk assessment platform (OpenGEM) and the OpenQuake software
- Sensor network of German Indonesian Tsunami Early Warning System, including ocean bottom units, buoys and tide gauges
- Global Fire Danger Forecast Web Portal (www.fire.uni-freiburg.de/gwfews/forecast_ews.html)
- Caribbean regional platform for sharing geospatial data and maps relevant to atmospheric risk, supported by Italy (CIMH)
- Namibia flood sensor-web portal (http://geobpms.geobliki.com/namibia)
- Global Volcano Model (GVM) (http://www.globalvolcanomodel.org/)
- TSX and COSMO/SkyMed data provided free of cost by Germany (DLR) and Italy (Italian Space Agency) respectively
HEALTH
Understanding environmental factors affecting human health and well-being

HE-01 Tools and Information for Health Decision-Making

Task implementation is supported by the Health and Environment Community of Practice and Air Quality Community of Practice

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Health: Access to improved environmental information and tools to support the global community of human health and environment experts. Increased use of environmental information and tools to support decision making in epidemics and/or disease management and planning for well-being. Applying outcomes from other Societal Benefit Areas to improve health and well-being.

Description
Develop tools and information systems for the environment and human health. Advance the integration of Earth observations and forecasts into health decision-making processes. Engage with health users and decision-makers to identify needs. Carry out capacity building and a plan for the promotion and sustainable use of Earth information by the health user-community. Establish linkages with other Societal Benefit Areas such as Ecosystems, Biodiversity, Climate and Disasters (e.g. in connection with floods, earthquakes, volcanic eruptions, cyclones, and tsunami events).

Components (note: Diseases may have other transmission pathways than those indicated below)

C1 Air-borne Diseases, Air Quality and Aeroallergens

Leads
European Commission (EC FP7, JRC) and United States (EPA, dickerson.phil@epa.gov)

Priority Actions
- Meningitis: Support the integration of research activities with public health needs to (i) reduce the burden of meningitis in Africa; (ii) provide access to quality climate information; (iii) identify risk assessment criteria; and (iv) map the distribution of meningitis and population at highest risk
- Influenza: Assess current activities, needs, and priorities in the use of Earth observations for the surveillance and prediction of seasonal influenza and early detection of pandemic influenza. Expand the availability, use, and application of Earth and influenza monitoring data
- Aerosols: Facilitate research and development activities for services related to monitoring of the atmospheric cycles of aerosols and their improved forecast in operational numerical models. Reduce risk due to aerosols for health and public safety and assess aerosol effects on marine and terrestrial ecosystems. Support initiatives such as the Sand and Dust Storm Warning and Assessment System (SDS-WAS)
- Air Quality: Provide near-real-time air quality observations and forecasts for health management, research and public information. Improve Earth observation data assimilation schemes. Implement a system that reduces adverse respiratory and cardiovascular outcomes among residents exposed to ambient pollution. Build upon the following projects: EO2HEAVEN, AIRNow International, and Real Time Data Dissemination for Air Quality
- Aero-allergens: Identify and expand tools, networks and databases providing information on aeroallergens for health decision-making. Support emerging observing systems and models to improve forecasts and alerts/early-warning. Improve links with phenology monitoring
C2 Water-borne Diseases, Water Quality and Risk

Leads
Nigeria (NASRDA) and United States (NOAA, juli.trtanj@noaa.gov)

Priority Actions

- Implement a global initiative for cholera early warning. Produce risk prediction tools to better manage cholera risk in key countries. Examine the relationship between environmental factors (e.g., climatic) and cholera outbreaks in sub-Saharan Africa and South Asia.
- Identify and map environmental factors affecting the distribution and re-emergence of leptospirosis. Address the various factors controlling leptospirosis (e.g., rodent populations, water and sanitation, environmental conditions) and provide recommendations for outbreak response and research.
- Build and sustain an international cross-disciplinary community that integrates environmental, health and social information to understand, predict, and reduce freshwater and marine disease risk. Determine the impact of extreme events, and climate variability and change, on the vulnerability of water sanitation systems globally, and related burden of water-borne disease.
- Assess coastal and inland aquatic system health and human health impact from vibrios, contaminants, and harmful algal blooms. Improve real-time data dissemination for coastal beach water quality (see also SB-01 and WA-01).

C3 Vector-borne Diseases

Leads
India (ICMR, dhimanrc@icmr.org.in) and Nigeria (NASRDA)

Priority Actions

- Link Earth observation and public-health communities to build user-driven tools for vector-borne disease monitoring. Tools would integrate climate conditions to produce advanced information for disease preparedness and control.
- Foster the use of satellite and in-situ data for monitoring environmental conditions conducive to the spread of vector-borne and zoonotic diseases. Identify initially district-level study areas in India, Africa, Europe and the Americas for dengue, malaria, Rift Valley fever, and Lyme disease respectively.
- Develop distribution maps of vector-borne diseases. Collect retrospective monthly/weekly data. Collect meteorological satellite data and examine the relationship with disease incidence. Study the feasibility of developing advanced systems for use by health authorities.

C4 A Holistic Approach to Health: Transmission Dynamics, Urban Health Forecasting, Linkages and New Technologies

Leads
United States (EPA, foley.gary@epa.gov)

Priority Actions

- Implement the health-meteorology forecasting service Healthy City – Intelligent City. Develop an early warning system in Shanghai focusing on Chronic Obstructive Pulmonary Disease (COPD), cardiovascular disease and children’s asthma. Map risks to understand not only physical and clinical factors, but also social determinants (see also EC-01).
Through an interdisciplinary approach, characterize the dynamics and mechanisms underlying the relationship between social stressors, changes in biodiversity, and disease transmission to humans (e.g. for Lyme disease, West Nile Virus)

Establish linkages between disasters (e.g. floods, earthquakes, volcanic activity, tsunami, cyclones) and areas prone to vector and waterborne diseases. Assess health consequences of intensive agricultural land-use

To Be Implemented in Connection with

SB-01 Oceans and Society: Blue Planet
DI-01 Informing Risk Management and Disaster Reduction
CL-01 Climate Information for Adaptation
WA-01 Integrated Water Information
WE-01 High-Impact Weather Prediction
EC-01 Global Ecosystem Monitoring
AG-01 Global Agricultural Monitoring and Early Warning
BI-01 Global Biodiversity Observation (GEO BON)

All “Infrastructure” and “Institutions and Development” Tasks

Resources Available for Implementation (tentative)

- European FP7 project EO2HEAVEN (funded until Jan 2013, overall budget 9MEUR), and GMES project MACC-II
- EEA air-quality monitoring web-services (link with GMES atmosphere core service); WISE (Water Information System for Europe) for water (including bathing-water) quality
- Funds and in-kind contributions (including human resources, data and information) from Brazil (FIOCRUS, UFPR), France (CNES), Japan (NIES), South Africa (CSIR, DST), USA (EPA, NASA, NOAA), WMO (SDS-WAS)
- WHO project on Global Information Management System on Environment and Health (GIMS)
- Project on impact of climate variability and urbanization on dengue in Delhi for risk prediction
- Project on developing an approach for prediction of outbreaks of malaria using rainfall and satellite derived vegetation index; with USA (Michigan University)
HE-02 Tracking Pollutants

Task implementation is supported by the Health and Environment Community of Practice

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Health: Access to improved environmental information and tools to support the global community of human health and environment experts. Increased use of environmental information and tools to support decision making in epidemics and/or disease management and planning for well-being.

Ecosystems: Increased operational monitoring of major ecosystems on land on an annual basis. Increased operational monitoring of major marine and coastal ecosystems on an annual basis.

Description

Increase the availability of Earth observation and information needed to track pollutants and anticipate changes to the environment. Harmonize standard operating procedures for monitoring pollutants and their compounds in air, atmospheric deposition, water, soil, sediments, vegetation and biota. Understand temporal and spatial patterns of pollutant transport and deposition to, and evasion from, terrestrial and aquatic ecosystems. Support the validation of regional and global atmospheric pollutant models for use in evaluations of different policy options. Evaluate the effectiveness of international efforts to reduce releases of pollutants.

Components

C1 Global Mercury Observation System

Leads

European Commission (EC FP7), Germany (GKSS Research Center, HZG), Italy (CNR-IIA, pirrone@iia.cnr.it), Japan (NIES) and South Africa (DEADP)

Priority Actions

- Develop standard operating procedures for monitoring mercury and its compounds in air, atmospheric deposition, water, soil, sediments, vegetation and biota
- Conduct ground-based observations to provide spatially-distributed information on mercury concentrations in ambient air and precipitation. Collect quasi real-time observations from over 40 sites worldwide located at different altitudes and latitudes
- Conduct marine observations to provide data on mercury concentrations in biotic and abiotic systems of major oceans (Atlantic, Pacific, Indian) and seas (North, Baltic, Mediterranean Seas)
- Collect globally-distributed tropospheric observations (on regional and intercontinental flights; GMOS and NAAMEX projects). Establish vertical profiles of mercury species across the troposphere and lower stratosphere
- Validate regional and global scale atmospheric mercury models on the basis of the data produced at ground-based sites over oceans and seas, and in the troposphere/stratosphere
- Develop an interoperable system to share information and tools, and download various types of datasets and information (observations, modeling products, reports)
C2 Global Monitoring of Persistent Organic Pollutants, Emerging Contaminants and Global Change Indicators

Leads
Czech Republic (RECETOX) and UNEP (SC POPs, kmagulova@pops.int)

Priority Actions
• Develop and implement a global monitoring plan for tracking changing levels of Persistent Organic Pollutants (POPs) in the natural environment and human beings
• Evaluate the effectiveness of international efforts to reduce POP releases
• Interlink relevant existing systems for monitoring air, water, ice caps and human health

To Be Implemented in Connection with
SB-01 Ocean and Society: Blue Planet
SB-04 Impact Monitoring of Human Activities
HE-01 Tools and Information for Health Decision Making
WA-01 Integrated Water Information
EC-01 Global Ecosystem Monitoring
BI-01 Global Biodiversity Observations (GEO BON)
All “Infrastructure” and “Institutions and Development” Tasks

Resources Available for Implementation (tentative)

Global Mercury Observation System
- European FP7 project GMOS (6.9 MEUR over 2010-2015; www.gmos.eu)
- US AMNet Program, funding period 2010-2012; French Polar Program
- CARIBIC funded by Max Planck Society, Helmholtz Association, and Leibniz Association
- NAAMEX (North America Airborne Mercury Experiment) project
- Operations of monitoring sites in/by Canada, China, Germany, and Japan

Persistent Organic Pollutants
- Stockholm Convention Secretariat: Financial resources for 2012: US$ 640,000; 2013: US$ 350,000. Secretariat staff time; Staff time of the regional organization group members
- Contribution from strategic partners: GAPS, RECETOX, South-East Asia Monitoring Programme, UNEP DTIE/Chemicals Branch, WHO
- GEF medium-sized projects on analytical procedures for new Persistent Organic Pollutants, capacity building for the implementation of the Global Monitoring Plan in the regions
ENERGY

Improving management of energy resources

EN-01 Energy and Geo-Resources Management

Task implementation is supported by the Energy Community of Practice

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Energy: Significant increase in use of Earth observations by all sectors (biomass, fossils, geothermal, hydropower, nuclear, ocean, solar and wind) for improved: (i) Prediction of potential hazards to the energy infrastructure; (ii) Prediction of the production of intermittent sources of energy; and (iii) Mapping of renewable energy potential. Improved energy management, including balance between energy demand and supply as well as development of alternative energy scenarios. Safe, efficient and affordable development and operation of existing and new energy resources, with emphasis on minimizing environmental and societal impact while moving towards a low-carbon footprint. Advancement of the application of data, systems and tools.

Description

Support the development of Earth observation products and services for energy and geo-resources management. Consider end-to-end energy production systems (including generation, transmission, distribution, and integrated operations) and geo-resource exploitation systems (including exploration, extraction and transportation). Promote collaboration between users and providers of Earth observation and information. Encourage the use of Earth observation and information for informed energy and geo-resources policy planning in developing and developed countries.

Components

C1 Tools and Information for the Resource Assessment, Monitoring and Forecasting of Energy Sources (including solar, wind, ocean, hydropower, and biomass) and Geological Resources (including mineral and fossil resources, raw material and groundwater)

Leads

European Commission (EC FP7), France (MINES ParisTech, thierry.ranchin@ensmp.fr), Germany (DLR), and CEOS (NASA)

Priority Actions

• Develop products and services required to assess countries’ potential for energy production. Foster the use of Earth observation and information in energy-policy planning
• Identify user needs for specific energy data sets (including solar, wind, ocean, hydropower, and biomass, geothermal)
• Develop a Bio-Energy Atlas for Africa to provide information on the quantity, distribution, usage, and quality of biomass. Provide Net Primary Production data and bio-energy potential prognosis-maps at 1 km resolution from the year 2000 onwards. Derive assessments of vegetation-cover degradation or changes (see also SB-02, SB-03)
• Promote the use of Earth observations for the mapping of geothermal resources, with a focus on the East African Rift System (EARS). Locate geothermal anomalies using thermal and mineral mapping under different climate conditions (desert, savannah, rain forest)
• Develop and promote the use of integrated Earth observations for each stage of the mineral life cycle (exploration, extraction, transportation, waste disposal, mine remediation and aftercare) to
provide the basis for informed decision-making and improved geo-resources management. Develop a sustainable “trialogue” between the mining industry, regulators and civil society

- Encourage training of decision-makers at all relevant levels for interpreting relevant data and products

To Be Implemented in Connection with

SB-02 Global Land Cover
SB-03 Global Forest Observation
SB-04 Impact Monitoring of Human Activities
CL-01 Climate Information for Adaptation
CL-02 Global Carbon Observation and Analysis
WA-01 Integrated Water Information
WE-01 High-impact Weather Prediction
AG-01 Global Agricultural Monitoring and Early Warning

All “Infrastructure” and “Institutions and Development” Tasks

Resources Available for Implementation (tentative)

- European FP7 projects ENDORSE (ENergy DOwnstReam SErvices - Providing energy components for GMES; 2011-2013); AEGOS Phase I legacy and Phase II, and EO-MINERS
- German (DLR) Biomass model BETHY; German “Presence Network” providing land-use change and ecosystem-services information, as well as ground truth sampling for biomass
CLIMATE
Understanding, assessing, predicting, mitigating, and adapting to climate variability and change

CL-01 Climate Information for Adaptation

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Climate: Improved scientific understanding, modelling and prediction of climate. Accessibility of all the observational data needed for climate monitoring and services in support of adaptation to climate variability and change. Availability of all Essential Climate Variables needed by the WCRP, the IPCC and the UNFCCC.

Agriculture: Improved agricultural risk assessment and operational weather/climate forecast systems for early warning and food security.

Description

Produce high-quality temporally-homogeneous estimates of past and current climate to better detect climate variability and change. Accelerate the implementation of the Global Climate Observing System (GCOS) – the climate-observing component of GEOSS. Accelerate advances in Earth-system prediction with a focus on coupling and interaction of the various Earth domains. Strengthen the ability worldwide to deliver new and improved climate, weather, water and environmental services. Support the integration of climate products and services into adaptation processes. Encourage the use of this information by policy and decision makers at all levels.

Components

C1 Extension and Improvement of the Climate Record

Leads
China (CMA), European Commission (EC FP7), IGBP (PAGES, thorsten.kiefer@pages.unibe.ch) and WCRP

Priority Actions

- Support reanalysis and reprocessing efforts in the atmosphere, ocean, land and-sea ice domains at global and regional scale. Accelerate the development of coupled reanalysis
- Facilitate the recovery, imaging, digitization, and archiving of historical atmospheric, terrestrial and marine observations. Develop datasets suitable for global climate applications with a focus on the past 100 years, including high-resolution global reanalysis products. Support the international Atmospheric Circulation Reconstructions over the Earth (ACRE) initiative and build upon the ERA-CLIM project and MACC-II, MyOcean-II, and geoland-2 services
- Compile proxy-based paleoclimate records over the last two millennia for the Arctic and all continents (including adjacent ocean regions). Produce regional-scale reconstructions of seasonal variations in temperature, precipitation, and atmospheric pressure fields. Promote proxy calibration, data-model comparison, and understanding of inter-decadal and longer climate change at global and regional scales
C2 Accelerated Implementation of the Global Climate Observing System

Leads
European Commission (EC FP7), Nigeria (Department of Geography), Norway (Norwegian Computing Centre), CEOS (JRC) and GCOS (WMO, crichter@wmo.int)

Priority Actions

- Support the implementation of the specific Actions identified in the “Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC” (2010 Update). These will help make available Essential Climate Variables datasets and be conducted across the atmospheric, oceanic, and terrestrial domains over the next five years.
- Provide support to the GCOS component systems: the WMO Global Observing System (GOS) and Global Atmosphere Watch (GAW), the IOC-led Global Ocean Observing System (GOOS), the FAO-led Global Terrestrial observing System (GTOS), the global hydrological networks and satellite systems.
- Establish actions securing the provision of Essential Climate Variables data from satellite systems. Build upon international initiatives such as the ESA Climate Change Initiative.
- Support the GCOS programme in its assessment of progress and adequacy, and its development of a new Implementation Plan, including review and refinement of the list of Essential Climate Variables, in the 2014-2015 timeframe.

C3 Weather, Climate and Earth-System Prediction Systems

Leads
WMO (WWRP-THORPEX, jim.caughey@gmail.com)

Priority Actions

- Foster advances on seamless prediction, sub-seasonal to seasonal prediction, and polar prediction through the implementation of dedicated international research projects. Capitalize on the expertise of both the weather and climate research communities.
- Improve the representation of organized tropical convection in models and of its interaction with the global circulation. In particular, support the Year of Tropical Convection (YOTC). Develop diagnostics/metrics for robust simulation of the Madden Julian Oscillation.

C4 Easy Access to, and Use of, Climate Information

Leads
WCRP (START)

Priority Actions

- Ensure delivery of the climate information needed for adaptation through the GEO Portal.
- Build upon existing “Climate Services” portals and clearinghouses such as the US portal “climate.gov” and the European Clearinghouse on climate change impact, vulnerability and adaptation.
- Accelerate the development of regional climate downscaling efforts (e.g. Coordinated Regional Climate Downscaling Experiment - CORDEX) and assessment of related products – to better meet the needs of the vulnerability, impact and adaptation communities.
- Build upon the WMO Global Framework for Climate Services (as it develops).
• Promote the implementation of regional initiatives such as the Climate for Development in Africa Programme (ClimDev Africa)
• Provide training on data series handling and the generation of regional climate change scenarios to enhance the role of National Meteorological Services as climate service providers

To Be Implemented in Connection with

- SB-01 Oceans and Society: Blue Planet
- SB-02 Global Land Cover
- SB-03 Global Forest Observation
- SB-04 Global Urban Observation and Information
- CL-02 Global Carbon Observation and Analysis
- WA-01 Integrated Water Information
- WE-01 High-impact Weather Prediction
- AG-01 Global Agricultural Monitoring and Early Warning

All “Infrastructure” and “Institutions and Development” Tasks

Resources Available for Implementation (tentative)

- European FP7 projects (ERACLIM) and GMES services (MACC-II, MyOcean-II and geoland-2)
- EEA European Clearinghouse on climate change impact, vulnerability and adaptation
- Research from Universities and Participating Organizations mentioned above
- In kind support by the PAGES International Project Office (e.g. website and publication services). Scientists participate in the regional 2k working groups as volunteers
- Support from PAGES for workshops with 5-10,000 USD. Some regional groups of the PAGES 2k network obtained national grants for individuals to work towards their regional group goals
- WMO (WWRP-THORPEX) and WCRP support for Year of Tropical Convection (YOTC) project
- YOTC Programme Office co-funded by USA (NASA, NOAA, NSF) in 2012
CL-02 Global Carbon Observation and Analysis

Task implementation is supported by the Carbon Community of Practice

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Climate: Development and facilitation of a comprehensive (atmosphere, ocean, land) global carbon observation and analysis system in support of monitoring based decision-making and related environmental treaty obligations.

Ecosystems: Increased operational monitoring of major ecosystems on land on an annual basis, including properties such as biomass and carbon estimates of vegetation and soils based on remote sensing and sampled in-situ observations using internationally agreed standards.

Description

Develop a comprehensive global carbon observation and analysis system integrated across the atmosphere, land and ocean (including anthropogenic) domains. Provide (i) improved estimates of carbon budget at different scales (from global to regional/national); and (ii) reliable information and products for decision-makers. Improve global observation networks of CO2, CH4, isotope ratios and exchange fluxes. Develop an integrated carbon-cycle data assimilation system. Provide communication points to increase the information flow from providers to users, and disseminate current state-of-the-art information.

Components

C1 Integrated Global Carbon Observation and Analysis System

Leads

Australia (CSIRO), China (Beijing Normal University), EC (FP7), France (LSCE), Italy (CMCC, University of Tuscia, bombelli@unitus.it), Japan (JAXA, NIES), Netherlands (University of Amsterdam), Norway (BCCR), UK (University of Sheffield), USA (NASA, USDA, USGS), CEOS, GTOS, WMO (GAW)

Priority Actions

- Improve information and products. Improve the resolution and accuracy of carbon budgets at different scales, particularly the regional one. Provide annual updates of the carbon balance for key regions. Provide harmonized global carbon information based upon existing observations (land, ocean, atmosphere and human dimension) and model integration
- Provide communication points to increase the information flow from providers to users, and disseminate current state-of-the-art information to decision-makers and the international community. Create a Carbon portal linked to the GEO Portal
- Improve global carbon observation networks. Produce a catalogue of current observation systems and datasets. Perform gap analyses of current monitoring systems and identify options to improve the coordination of global observing systems. Promote quantity and quality of measurements of carbon pools and fluxes, considering both CO2 and CH4. Design an optimal observational network for an operational global carbon observing system
- Develop a Carbon Cycle Data Assimilation System (CCDAS) ingesting data from multiple sources at different scales (in-situ and satellite observations of atmospheric, terrestrial and oceanic domains). Develop user-oriented geo-information tools, databases and models integrating data from different sources. Maintain and update a geo-referenced database of all available data
- Promote space-based measurements. Routinely provide space-based greenhouse-gas data and products for CO2 and CH4 (e.g. based on GOSAT, SCHIAMACHY, AIRS, TES, and IASI)

To Be Implemented in Connection with

SB-01 Ocean and Society: Blue Planet
SB-03 Global Forest Observation
SB-04 Global Urban Observation and Information
SB-05 Impact Assessment of Human Activities
EN-01 Energy and Geo-Resources Management
WA-01 Integrated Water Information
EC-01 Global Ecosystem Monitoring

All “Infrastructure” and “Institutions and Development” Tasks

Resources Available for Implementation (tentative)

- European FP7 and GMES projects: GEOCARBON (8.6 MEUR for 3 years, ending Sept 2014), CARBOCHANGE, MACC-II, CARBO-Extreme, CARBOOCEAN, EnerGEO, GCP, GHG-Europe, ICOS, InGOS, TCCON, TRANSCOM
- GEO-Carbon Office set up in the context of GEOCARBON. Two people will work until the end of 2014 to promote the coordination of the different communities involved in carbon observations and analysis systems, and mediate between science and policy
- Resources allocated to FLUXNET and other regional flux networks (such as the Asia Flux network observing CO2 fluxes in forests)
- US NEON program for a comprehensive terrestrial carbon data assimilation system (TCDAS); Open community resources developed following the open and collaborative model of the NCAR Community Earth System Model (CESM)
- EEA activities related to greenhouse-gas emissions monitoring and reporting, and European carbon accounting case-study for UNSD (United Nations Statistics Division) SEEA (System of Integrated Environmental-Economic Accounting)
- Japanese greenhouse gas observing satellite GOSAT (providing e.g. datasets of CO2 global distribution)
- Resources allocated to WMO (GAW) via partner organizations and WMO Secretariat for support/coordination of the GHG observations, their quality control, data archiving, data products and publications preparation and distribution
- CEOS Carbon Task Force preparing a Space Agency Response to the GEO Carbon Strategy Report
- In-kind support from Italy (Ministry for the Environment, Land and Sea, and the Institute for Environmental Protection and Research - ISPRA)
WATER

Improving water-resource management through better understanding of the water cycle

WA-01 Integrated Water Information (incl. Floods and Droughts)

Task implementation is supported by the Integrated Global Water Cycle Observations Community of Practice

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Water: An operationalized and sustained global network of in-situ observation sites. Increased availability of information products and services for monitoring changes in the water cycle, including clouds and precipitation, appropriate for both research and integrated water resource management. Increased availability of data and information, including quantity and quality of both surface and groundwater, to support a water-cycle decision-making system. Routine, reliable production of “watershed” and human health indicators from satellite data, surface and subsurface data, and data assimilation capabilities.

Ecosystems: Increased operational monitoring of major marine and coastal ecosystems on an annual basis. Increased knowledge of environmental flow requirements of river baseflow and peak flow, as well as human requirements for irrigation and power plant cooling water and domestic usage.

Description

Develop integrated and sustained information systems to produce the water products and services needed for water, disaster, agriculture, energy and health management. Focus on developing local, regional and global hydrological monitoring, risk assessment (e.g. floods, droughts), prediction and management systems for integrated water-resource management (IWRM). Maintain an operational and sustained global network of in-situ observation sites and satellite systems to provide global coverage of priority water-cycle variables. Increase the scope and availability of products and services for monitoring changes in the water cycle (including precipitation, evapo-transpiration, soil moisture, river discharge and storage in lakes and reservoirs, and groundwater storage). Develop information products on the quality of surface and coastal waters for a comprehensive water-cycle decision making system.

Components

C1 Integrated Water-cycle Products and Services

Leads

European Commission (EC FP7), Japan (University of Tokyo), Nigeria (NASRDA), Spain (CSIC), United States (MSU, NASA, richard.lawford@morgan.edu), CEOS (JAXA) and ESA

Priority Actions

• Ensure users have access to stable, state-of-the-art, characterized, global precipitation datasets. Build upon the GMES In-Situ Component (GISC) and Virtual Constellation for Precipitation (see IN-01)
• Improve global evapo-transpiration products for vegetated land surfaces, and also for lakes and rivers, deserts, urban areas and snow-covered land-areas
• Develop a global soil-moisture product and service for climate and water management applications
• Integrate, in a phased approach, dedicated river gauging networks of existing hydrological stations into a global runoff observation network. Make the data available through the GEOSS Common Infrastructure using standardized formats
• Establish a Global Groundwater Monitoring Network (GGMN) for a periodic assessment of global groundwater resources, using information from existing national, regional and global networks
• Deliver integrated data sets from the Great Lakes basin providing information on extent of ice cover, surface and groundwater levels, and bacteria conditions at beaches. Develop tools to ensure access and interoperability to serve the needs of theme-based user communities
• Develop a GEOSS Water Cycle Integrator (WCI) to provide holistic coordination of water cycle information, including integration of observations, research, modeling, and analysis; cross-SBA applications; management systems; and a sustained educational framework
• Develop end-to-end water-cycle status indicators. Provide an operational global data compendium, organized as a set of electronic maps, and representing a definitive, comprehensive, and up-to-date picture of the state of hydrological systems and affiliated water resources, their accessibility and use by society

C2 Information Systems for Hydro-meteorological Extremes (incl. Floods and Droughts)

Leads
Austria (TU Vienna, will.pozzi@gmail.com), China (BNU), European Commission (EC FP7, JRC) and United States (NOAA)

Priority Actions
• Establish an integrated framework for predicting, monitoring and responding to hydro-meteorological extremes. Construct a global, multi-model and multi-ensemble flood and drought information platform to assemble existing sources of real-time flood and drought information (forecasts and observations), while providing a common risk-management framework for early warning and risk management. Build upon the European Floods Alert System (EFAS) and ongoing end-to-end projects (see DI-01), as appropriate
• Establish a global drought observing system to correct errors in precipitation, soil moisture, evapotranspiration, and terrestrial water-storage change derived from land-surface/hydrological models
• Establish a global drought monitor to link together continental and regional drought monitoring efforts and produce a web-based, real-time, geographic information system. Develop a regional drought impacts monitor to assess drought vulnerability by establishing a water usage and demand baseline
• Establish a global drought information system, capitalizing on drought observing, monitoring, and impact systems, to enable early-warning systems to more effectively respond to drought at national/regional levels. Start with a prototype system focusing on documented test-cases in specific regions

C3 Information Service for Cold Regions

Leads
Canada (University of Waterloo, ells@uwaterloo.ca), China (BNU), Spain (CSIC) and United States (NOAA)

Priority Actions
• Archive, manage, and provide access to in-situ and remotely-sensed metadata and data sets for monitoring frozen ground, glaciers, ice sheets, sea ice, and snow, through appropriate national, regional and global systems and centres (see also EC-01).
• Archive, manage, and provide access to in-situ and remotely sensed data sets and associated metadata for monitoring cold regions through appropriate national, regional, and global systems and centres for: (i) frozen ground, glaciers, ice sheets, sea ice, and snow; (ii) biodiversity,
ecosystem productivity and human-environment interactions, including use of community-based monitoring (see also EC-01 and BI-01); (iii) ocean, atmosphere, and land surface structure, composition, and processes (see also IN-02 and SB-01)

- Build a polar data catalogue through integrated observation and modelling data from the broad range of “International Polar Year” research activities
- Support the development of sustained and coordinated pan-Arctic observing and data sharing systems that serve societal needs. Improve the networking among existing observing systems and sites to create pan-Arctic observing networks. Promote the implementation of the SAON project (Sustaining Arctic Observing Networks; see IN-01)
- As a component of the Global Cryosphere Watch (GCW) portal, establish a Cryosphere Constellation of Portals by linking existing and proposed portals of cryospheric information, such as the Polar Data Catalogue (Canada), National Snow and Ice Data Centre and SAON (USA), and Norwegian Meteorological Institute (met.no). Link this Cryosphere Constellation of Portals through WIS/GEOSS interoperability standards

C4 Global Water Quality Products and Services

Leads
Australia (CSIRO), Estonia (SEA), Germany (University of Bonn) and United States (NOAA, State of Wisconsin, steven.greb@wisconsin.gov)

Priority Actions
- Integrate, in a phased approach, dedicated river gauging networks of existing hydrological and water quality stations into a global observation network. Make the data available through the GEOSS Common Infrastructure using standardized formats
- Develop improved Earth observation derived water-quality datasets through algorithm development, atmospheric correction and standardization of data processing and products
- Conduct demonstration projects on the value of Earth observations for water management such as expanding the ChloroGIN project as a fast track end-to-end exercise to include large lakes and evaluate existing lake algorithms (see SB-01)
- Develop a riverine water-quality data assimilation system primarily based on in-situ water quality data from the GEMS archive and constituent transport models. Develop integrative hydrologic/water-quality models focused on sediment and nutrients
- Scope water-quality information systems to collate, manage and provide public access to international water-quality datasets. Develop toolsets for analysis and visualization, incorporating both remotely-sensed and in-situ databases as well as data-assimilated information products
- Coordinate efforts of the water-quality community, working with other GEO communities such as Oceans, Health and Biodiversity (related freshwater ecosystems)

C5 Information System Development and Capacity Building

Leads
Canada (IISD), Japan (University of Tokyo), USA (NOAA, USAID, angelica.gutierrez@noaa.gov), ESA, IEEE, UNESCO

Priority Actions
- Latin and Caribbean Americas: Design a programme for water-resource management to support the development of infrastructure, decision-support-systems, and training/research applied to the use of Earth observation. The programme should include water quantity and water quality, and the application of water management to inland waters, coastal waters and oceans
• Asia: Develop competencies among water management practitioners, researchers, and administrators through demonstration projects in the Asian Water Cycle Initiative. Build upon Sentinel Asia to develop disaster management-support systems and Space Application for Environment (SAFE) in the Asia-Pacific region (see also DI-01)

• Asia: Develop information systems based on open-source software infrastructure to promote integrated water resources management (IWRM), transboundary river basin management, and water information sharing. Build upon European projects and initiatives in Central Asia (e.g. Yellow River delta and Mekong catchment areas)

• Africa: Improve the collection, analysis and dissemination of water-related information. Support the African Water Cycle Coordination Initiative to develop an independent water management capacity and sustainable water observing networks. Build upon the TIGER initiative (space technology for water resource management in Africa), the GMES Africa Action Plan, and existing information systems such as SERVIR

• Conduct demonstration projects on the value of Earth observations for water management. Assess and coordinate requirements for Earth observation data, products and services. Capture user-feedback on an ongoing basis across the Water area (particularly from developing countries), and register these indicators as applications in the User Requirements Registry

• Conduct pilot projects for improved water discovery and quality in cooperation with local, regional, and national groups, to provide water quantity and quality assistance

To Be Implemented in Connection with

SB-01 Oceans and Society: Blue Planet
DI-01 Informing Risk Management and Disaster Reduction
HE-01 Tools and Information for Health Decision-Making
HE-02 Tracking Pollutants
CL-01 Climate Information for Adaptation
CL-02 Global Carbon Observation and Analysis
WE-01 High-Impact Weather Prediction
EC-01 Global Ecosystem Monitoring
AG-01 Global Agricultural Monitoring

All “Infrastructure” and “Institutions and Development” Tasks

Resources Available for Implementation (tentative)

- Data, systems and services contributed by the Global Precipitation Climatology Centre, Global Runoff Data Centre, International Groundwater Assessment Centre, International Data Centre on the Hydrology of Lakes and Reservoirs, and World Glacier Monitoring Service
- Data, systems and services contributed by USA (EPA, NASA Goddard Space Flight Centre, NOAA NESDIS, USDA)
- European FP7 projects GEO-WOW (Water Component), DEWFORA, GLOWASIS, and CEOP-AEGIS; GMES In-Situ Component (GISC); European Floods Alert System (EFAS)
- EEA activities on floods/droughts indicators and reporting; flood impact assessment (also linked to GMES GIO emergency response); Water Information System for Europe (WISE) regional study for global water quality services; European water accounting (UNSD SEEAW)
- CEOS Virtual Constellation for Precipitation
- Canadian Polar Data Catalogue and prototype WMO Global Cryosphere Watch (funding obtained through grants and contributions from Canadian government agencies)
- Japan (JAXA, University of Tokyo) support for research and the African Water Cycle Coordination Initiative; Japan strengthened strategy for Arctic environment
- German capacity-building projects in Central Asia including WISDOM (www.wisdom.caf.dlr.de) and DONGTING (largest fresh water inland lake and wetland in China)
- Environment Canada support for Latin American & Caribbean water-cycle capacity-building activities
- ESA support for the TIGER NET project (pilot projects focused on major trans-boundary basins in Africa; 1.5 MEUR)
- IEEE support for "Monitoring Water Quality in Lake Nicaragua by Satellite Remote Sensing" (US$ 27,000)
- Additional in-kind contributions from Austria (Technical University of Vienna), Canada (University of Manitoba), EC (JRC), Japan (JAXA, University of Tokyo), UK (University College of London), USA (EPA, NOAA, Princeton University, USGS), IEEE
WEATHER
Improving weather information, forecasting and warning

WE-01 High-Impact Weather Prediction and Information

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Weather: Improvements in the range and quality of services for high-impact weather forecasting due to the design, future development, and operation of global observing, data assimilation, numerical modelling, and user application techniques. More accurate, reliable and relevant weather analyses, forecasts, advisories and warnings of severe and other high-impact hydro-meteorological events enabled by enhanced observational capabilities

Agriculture: Improved agricultural risk assessment and operational weather/climate forecast systems for early warning and food security

Energy: Significant increase in use of Earth observations by all sectors for improved prediction of potential hazards to the energy infrastructure.

Description

Increase the predictability of high-impact weather events worldwide. Enhance collaboration on ensemble prediction, both internationally and among operational centres and academia. Produce user-driven probabilistic products to improve early warnings of high-impact events. Realize the benefits of research developing and evaluating these probabilistic products. Enable the development of an operational Global Interactive Forecast System (GIFS) to coordinate advance warnings and forecasts of high-impact weather events to mitigate loss of life and property. GIFS will be developed through the volunteer contributions of national, regional, and international organizations, requiring significant investment from National Hydro-Meteorological Services and other organizations. Contribute to high priority issues such as disaster early warning, food security, and energy infrastructure safeguard.

Components

C1 Global Multi-Model Prediction System for High-Impact Weather

Leads

WMO (WWRP/THORPEX, jim.caughey@gmail.com)

Priority Actions

- Further develop TIGGE (THORPEX Interactive Global Grand Ensemble), as a user-friendly database of global ensemble weather forecasts. Use web-enabled technology to foster the generation and distribution of products. Develop a future archive strategy, product generation and service provision. Finalize and implement access arrangements

- As an initial step, produce user-driven probabilistic products (based on TIGGE forecasts) such as tropical cyclone tracks, heavy rainfall and strong wind distributions. Build upon the WMO Severe Weather Forecast Demonstration Projects (SWFDPs) to provide a framework for the evaluation of these prototype products, and to ensure that products address the needs of operational forecasters and end-users
C2 Easy Access to, and Use of, High-impact Weather Information

Leads
WMO (WWRP-THORPEX, jim.caughey@gmail.com)

Priority Actions

• Support the implementation of THORPEX Africa in conducting detailed case studies of selected high-impact weather events across Africa to improve prediction through promoting collaboration between the research and operational communities

• Extend the concept of Virtual Centers for high-impact weather prevention to Central America, building upon the experience of the operational Centre for Eastern South America. Deploy weather watching networks (based on remote sensing) to better detect and forecast high-impact weather

• Facilitate technical cooperative activities for the exchange of weather prediction hardware, software, technologies, and expertise

• Develop training activities for the use of numerical weather prediction, meteorological satellite images and meteorological radar data, as a prerequisite to the implementation of early warning systems

To Be Implemented in Connection with
SB-01 Oceans and Society: Blue Planet
SB-04 Global Urban Observation and Information
DI-01 Informing Risk Management and Disaster Reduction
HE-01 Tools and Information for Health Decision-Making
EN-01 Energy and Geo-Resources Management
CL-01 Climate Information for Adaptation
WA-01 Integrated Water Information
AG-01 Global Agricultural Monitoring and Early Warning
All “Infrastructure” and “Institutions and Development” Tasks

Resources Available for Implementation (tentative)

− Weather forecasts and research from 10 global weather forecasting centers: Australia (BOM), Brazil (CPTEC), Canada (Environment Canada), China (CMA), France (MétéoFrance), Japan (JMA), Korea (KMA), UK (UKMO), USA (NCAR, NCEP) and ECMWF

− Archiving centres at China (CMA), USA (NCAR), and ECMWF

− European FP7 project GEOWOW (Weather Component; commenced in Sept. 2011)

− Support from the community of Africa National Hydrological and Hydrometeorological Services (NMHS) and academic institutions across Africa

− THORPEX Africa requires resources to fund a few post-docs and graduate students to conduct predictability studies and analysis of selected high-impact weather events
ECOSYSTEMS

Improving the management and protection of terrestrial, coastal and marine resources

EC-01 Global Ecosystem Monitoring

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Ecosystems: Implementation of a global standardized ecosystem classification system and map as a basis for worldwide inventory, assessment and monitoring. Implementation of a global, standardized inventory of major ecosystems and the protected areas within them. Increased operational monitoring of major ecosystems on land on an annual basis, including properties such as land cover type; species composition; vegetation structure, height and age; net ecosystem productivity; and biomass and carbon estimates of vegetation and soils based on remote sensing and sampled in-situ observations using internationally agreed standards.

Agriculture: Development of quantitative measurements of global and regional desertification.

Description

Assess the present state and trends of ecosystem conditions and services (including protected areas), as well as the pressures and impacts upon them, for policy-making and natural resource management. Provide a corresponding framework and improve the basic knowledge of temporal and spatial variations of ecosystems. Promote sustained and comprehensive observations to assess ecosystem resilience (i.e. the capacity to resist, and recover from, changes, such as habitat fragmentation and alien species invasion). Refine techniques for documenting ecosystem services, and work with established international monitoring communities and networks.

Components

C1 Global Standardized Ecosystem Classification, Map and Inventory (incl. characterizations of ecosystems in protected areas)

Leads

China (CAS), European Commission (EC FP7) and United States (USGS, rsayre@usgs.gov)

Priority Actions

• Develop a standardized robust and practical global ecosystem classification – and map – for terrestrial, freshwater, and marine ecosystems. Focus on scales appropriate for ecosystem management. Integrate global ecosystem products with existing ecosystem maps and databases
• Conclude the Australia GEOSS ecosystem mapping effort, and initiate standardized ecosystem mapping in Indonesia
• Apply Earth observations (e.g. optical, radar images) to the characterization, mapping and monitoring of global protected areas consisting of UNESCO World Heritage sites & Biosphere Reserves; RAMSAR Wetlands, natural areas; and sites of cultural, geological and archaeological significance. Explore technologies to assess the impact of landscape changes resulting from human activities (e.g. construction, tourism, agriculture) and environmental disasters (e.g. ground subsidence, earthquakes, floods). Conduct a global gap analysis of ecosystem representation in protected areas
C2 Operational Monitoring of Key Ecosystems and Related Services

Leads
Austria (ZAMG), Canada (CSA), China (CAS), Germany (Jena University/ GTOS GOFC-GOLD), and Italy (Ev-K2-CNR)

Priority Actions
• For key ecosystems (e.g. moist forests, dry forests, Arctic ecosystems, wetlands, drylands, mountains), initiate and develop an operational monitoring program to assess changes in ecosystem extent, condition, structure, function, and composition
• Make relevant synergies with monitoring activities for marine and coastal ecosystems (see SB-01) and GEO BON activities (e.g. on freshwater ecosystems; see BI-01)
• Implement a high-elevation climate and environment monitoring network, starting with the existing SHARE network (Stations at High Altitude for Research on the Environment). Build upon the European project ACQWA (Assessing Climatic change and impacts on the Quantity and quality of WAter) to analyze the future of water resources in vulnerable mountain regions
• Coordinate international efforts to collect and develop phenology observations (in-situ and space-based) and modeling products (see also HE-01)
• Build upon the ABCC Programme (Comparative Study on Global Environmental Change Using Space Technology) to assess changes in global-change sensitive parameters such as forest carbon, vegetation, glacier, snow and aerosol distributions
• Develop a conceptual framework program for using Earth observations to monitor the production and delivery of ecosystem goods and services, from ecosystems to consumers as a potential model for global implementation

To Be Implemented in Connection with
SB-01 Oceans and Society: Blue Planet
SB-02 Global Land-Cover
SB-03 Global Forest Observation
SB-04 Global Urban Observation and Information
SB-05 Impact Assessment of Human Activities
HE-01 Tools and Information for Health Decision Making
HE-02 Tracking Pollutants
CL-02 Global Carbon Observation and Analysis
WA-01 Integrated Water Information
BI-01 Global Biodiversity Observation (GEO BON)
All “Infrastructure” and “Institutions and Development” Tasks

Resources Available for Implementation (tentative)
- US Geological Survey (USGS) activities on global ecosystem classification and mapping ($300,000 to date (1 full-time-equivalent plus travel, 2 years); USAID activities on Africa mapping ($330,000 to date)
- EEA activities related to ecosystem capital accounting, and European case-studies for UNSD (United Nations Statistics Division) SEEA (System of Integrated Environmental-Economic Accounting)
- Center for Earth Observation and Digital Earth (CEODE, Chinese Academy of Sciences) activities related to World Heritage Sites monitoring. Resources include (i) reception, processing and product development for over 10 satellites, including TM and SPOT data; and (ii) over 1.7 million scenes of Earth satellite observation
- Remote sensing data from CBERS (China-Brazil); MODIS and GLAS (USA); FY series (China) and MTSAT (Japan); Radarsat (Canada); and ERS (Europe)
- International SHARE project - Stations at High Altitude for Research on the Environment
- China ABCC Programme (Comparative Study on Global Environmental Change Using Space Technology)
- National Science Foundation of China (NSFC) support project: Comparative Study on Global Environmental Change Using Remote Sensing Technology; 50 M$
- Chinese research programs e.g. “Virtual Reality System of Tourism in Huang Guoshu Scenic Spot” and “Science Platform of Digital Earth”
- In-kind contributions from Canada (CSA, CNR, Environment Canada), Italy (Ev-K2-CNR)
AGRICULTURE
Supporting sustainable agriculture and combating desertification

AG-01 Global Agricultural Monitoring and Early Warning

Task implementation is supported by the Global Agricultural Monitoring Community of Practice

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

"Agriculture: Increased use of Earth observing capabilities and supporting applications systems to produce timely, objective, reliable, and transparent agricultural and forest statistics and information at the national and regional level. Improved agricultural risk assessment and operational weather/climate forecast systems for early warning and food security. Effective early warning of famine leading to more timely mobilization of an international response in food aid. Expanded monitoring of agricultural land use change, through periodic regional and global assessments. Increased capacity building through targeted workshops and joint multi-institution research teams."

Description

"Improve sustainable agriculture management and food security through the increased use of Earth observation and information. Enhance current global capabilities in agricultural monitoring, food-supply prediction and agriculture risk-assessment. Develop early-warning systems to enable timely mobilization of international response in food aid. Build capacity and expand the use of Earth observation and information for agricultural monitoring in Africa, Asia, Latin America, Central and Eastern Europe, and Small Island States."

Components

C1 A Global Operational Monitoring System of Systems for Agricultural Production, Famine Early-warning, Food Security and Land-use Change

Leads

China (BNU, IRSA-CAS), European Commission (EC FP7, JRC), India (ISRO, parihar_jaisingh@yahoo.com), Japan (JAXA), United States (UMD/NASA/FAS, USDA) and CEOS (USGS)

Priority Actions

- Foster the development of the GEO Global Agricultural Monitoring initiative (GEO-GLAM) for improved crop monitoring and reduced price volatility over the world. Build upon G20 support to develop a program and budget, and initiate implementation
- Undertake Joint Experiments on Crop Assessment and Monitoring (GEO-JECAM). Establish a series of research supersites over a range of cropping systems. Facilitate inter-comparison of retrieved information and methods for crop acreage estimation/monitoring and yield estimation/forecasting, with the aim of establishing best practices for different agricultural systems
- Develop the PAY (Production Area Yield) Database. Encourage countries to contribute monitoring data to a common database for inter-comparison and analysis. Enable query for data on production, commodity (e.g. corn, soy, wheat, rice), year (2005-present), date of forecast, country and agency
- Conduct Coordinated Data Initiatives for Global Agricultural Monitoring (CDIGAM). Define observational requirements, identify gaps in current in-situ observations, and promote satellite data
continuity. Encourage full and open access to data (e.g. from Brazil, Canada, China, EU, India, Israel, Japan, Korea, Russia, South, Thailand, USA)

- Develop an Earth observation approach to the production of pasture/rangeland biomass and the monitoring of those factors conducive to good quality animal protein
- Implement the Global Agricultural Monitoring Thematic Workshop Series – a series of technical international workshops on techniques and methods, best practices, emerging technologies and model inter-comparisons. Foster exchange of information and expertise between developed and developing countries e.g. through fellowships granted to researchers. Develop tools and training materials supporting agricultural applications
- Support AGRIMET, in collaboration with National Meteorological and Hydrological Services, to help rural communities in West Africa make better use of weather and climate information and increase the productivity of their cropping systems
- Launch new activities in relevant areas such as agricultural drought, agriculture and water use, cropping systems analysis, modeling cropping systems response in the context of global change, global crop phenology, impact of intensive agricultural land-use on health (see also HE-01 and WA-01)

To Be Implemented in Connection with

SB-02 Global Land Cover
SB-03 Global Forest Information
HE-01 Tools and Information for Health Decision Making
EN-01 Energy and Geo-Resources Management
CL-01 Climate Information for Adaptation
WA-01 Integrated Water Information
WE-01 High-Impact Weather Prediction
EC-01 Global Ecosystem Monitoring

All “Infrastructure” and “Institutions and Development” Tasks

Resources Available for Implementation (tentative)

- National support for the GEO-JECAM pilot sites in Argentina, Brazil, Canada, China, Europe and Mexico
- Agro-meteorological information, crop-cultivated-area and crop-yield information derived from GEO Members’ satellite observations. Information on soil moisture derived from Japanese AMSR-E (and GCOM-W1) used to assess crop-yield status and drought conditions around the world
- ESA project Global Monitoring for Food Security (GMFS) to build institutional and individual capacity to foster the use of remote sensing for monitoring agriculture in Africa (2003-2013)
- US EPA project (in collaboration with University of Washington and Oregon State University) to optimize the provision of ecosystem services and decisions on growing practices/pesticide use under extreme weather (California and Oregon)
- Training program initiated by India (ISRO)
- Support for the GEO-JECAM Secretariat from Canada (Agriculture and Agri-food)
- Support from the Agriculture Community of Practice for the Thematic Workshop Series
- Additional in-kind contributions from China (IRSA), EC (JRC), India (ISRO) and USA (EPA, UMD, USDA)
- GEOGLAM funding is expected to be on the order of US$ 7 millions/year. The resources will be used for coordination, supporting best practices experiments, harmonization and capacity development
BIODIVERSITY
Understanding, monitoring and conserving biodiversity

BI-01 Global Biodiversity Observation (GEO BON)

Task implementation is supported by the Biodiversity Community of Practice

Related GEOSS Strategic Targets (from GEO-VI Document 12 Rev1)

Ecosystems: Implementation of a global standardized ecosystem classification system and map as a basis for worldwide inventory, assessment and monitoring. Implementation of a global, standardized inventory of major ecosystems and the protected areas within them. Increased operational monitoring of major ecosystems on land on an annual basis. Increased operational monitoring of major marine and coastal ecosystems on an annual basis.

Biodiversity: Increased routine collection of long term in-situ and remotely sensed biodiversity observations. Access through GEOSS to a large panel of biodiversity observations, including satellite, aerial and in-situ. Increased information sharing on biodiversity conservation and sustainable use of biodiversity resources. Implementation of a mechanism that enables users to interact with the development of biodiversity observations systems and request services. Increased availability of biodiversity information necessary to respond to and support related topics (ecosystems, health, climate, etc). Increased information to reduce the cost and support the management of biodiversity issues.

Description
Implement the GEO Biodiversity Observation Network (GEO BON): a global, scientifically-robust framework for observations designed to detect biodiversity change. Coordinate data gathering and delivery of biodiversity information, and build upon existing analyses and systems to identify key areas of data collection and monitoring (e.g. migratory, endemic or globally threatened species). Work in cooperation with conventions (e.g. the Convention on Biological Diversity, CBD), and the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES). Promote observations relevant to the Strategic Plan for Biodiversity 2011-2020 and the Aichi Biodiversity Targets.

In particular, (i) support monitoring systems that enable frequent, repeated assessment of status and trends in species and ecosystems; (ii) facilitate consensus on data collection and management standards and protocols; (iii) develop and facilitate implementation of Essential Biodiversity Variables (EBVs); and (iv) develop reporting mechanisms and decision support tools for biodiversity at the genetic, species and ecosystem level (connecting to ecosystem services). Foster a mutually beneficial dialogue between terrestrial and marine components (see SB-01).

Components

C1 Global Biodiversity Observation Network (GEO BON)

Leads
Germany (University of Freiburg), Japan (Kyushu University), Netherlands (EBONE), South Africa (CSIR, mwalters@csir.co.za), Spain (CSIC), United States (NASA), DIVERSITAS, and IUCN

Priority Actions
- Develop a global biodiversity observing network: Establish a global network of biodiversity and ecosystem observatories. Promote increased collection and availability of biodiversity observations, in particular for monitoring progress in the implementation of the Strategic Plan for
Biodiversity 2011-2020. Facilitate the development of National and Regional Biodiversity Observation Networks (BONs)

- Develop standards for data collection and management: Promote standards for monitoring biodiversity. Harmonize ecosystem mapping and monitoring (see EC-01, SB-01). Promote biodiversity data interoperability and publishing standards
- Develop and promote Essential Biodiversity Variables (EBVs): Develop a set of EBVs. Promote monitoring standards for EBVs. Promote and develop observation networks for EBVs
- Develop reporting mechanisms and decision support tools for biodiversity: Produce annual maps of ecosystem services. Facilitate development of a Global Wetlands Observing System. Develop methodologies for reporting and mapping global change in compositional and phylogenetic diversity. Collaborate on an Atlas of Freshwater Biodiversity. Incorporate biodiversity information and analyses from GEO BON into indicator-based policy products designed and delivered to meet user needs

To Be Implemented in Connection with

SB-01 Oceans and Society: Blue Planet
SB-02 Global Land Cover
SB-03 Global Forest Observation
SB-05 Impact Assessment of Human Activities
HE-01 Tools and Information for Health Decision Making
HE-02 Tracking Pollutants
CL-01 Climate Information for Adaptation
WA-01 Integrated Water Information (incl. Floods and Droughts)
EC-01 Global Ecosystem Monitoring
AG-01 Global Agricultural Monitoring and Early Warning

All “Infrastructure” and “Institutions and Development” Tasks

Resources Available for Implementation (tentative)

- GEO BON 8 working groups (average membership of 16 per group). Individuals volunteer time and represent 97 organisations
- Regional Biodiversity Observation Networks (BONs)
- South Africa (DST) funds the GEO BON Office
- USA (NASA, NSF) grants/funds for workshop and meeting support: Approx EUR 300k over 3 yrs
- Funds granted by Switzerland through the GEO Secretariat: approx EUR 40k
- ESA hosting and sponsorship of experts meetings
- Ramsar sponsorship of planning meetings for a Global Wetland Observing System (GWOS)
APPENDIX A: GEO COMMUNITIES OF PRACTICE

DEFINITION
A Community of Practice is a user-led community of stakeholders, from providers to the final beneficiaries of Earth observation data and information, with a common interest in specific aspects of societal benefits to be realized by GEOSS implementation.

OBJECTIVES
Each Community of Practice will have slightly different objectives, however common objectives will include:

a. Identify, gather, and seek agreement on particular user community requirements
b. Provide a forum for cooperation of activities where GEOSS adds value to existing initiatives, to identify linkages and opportunities for collaborative strategic and technical projects and to coordinate the delivery of GEOSS Targets to enable the realization of societal benefits
c. Advise on matters relating to societal benefit and on cross-cutting issues of interest to the Community of Practice

PARTICIPANTS
Each Community of Practice should include representatives from GEO Members, Participating Organizations and any other stakeholders that have similar interests or objectives - working closely together as a GEO forum for intelligence and advice for the successful implementation of GEOSS. Both developing and developed countries should be represented.

GEO COMMUNITIES OF PRACTICE

Air Quality
The Air Quality Community of Practice connects providers of Earth observations to users who apply them for societal benefit. It seeks to enable the development of a functioning Air Quality System of Systems by 2015. Major air quality data hubs are working toward making the Air Quality Data Network happen by (i) expanding the network; (ii) adding more datasets to the shared data pool; (iii) broadening the metadata support and linking the Air Quality Community Catalog to other catalogs. Anticipated activities in support of GEOSS include gathering user requirements for air-quality management, science, and education; enabling data access and re-use through web services; supporting the use of standards for sharing data and metadata; and fostering and sharing tools and methods as best practices.

URL: http://datafedwiki.wustl.edu/index.php/GEO_AQ_CoP

Contact
Gary Foley, Environmental Protection Agency, USA, foley.gary@epa.gov
Rudolf Husar, Washington University St. Louis, USA, rhusar@wustl.edu

Biodiversity
Some 100 governmental and non-governmental organizations are collaborating through the GEO Biodiversity Network, GEO BON, to make their biodiversity data, information, and forecasts more readily accessible to policymakers, managers, experts, and other users. By bringing together the diverse, stand-alone observation instruments and systems now tracking biodiversity trends, GEO BON is working to create a global platform for integrating biodiversity data with climate data and other key
variables. GEO BON has been recognized by the Parties to the Convention on Biological Diversity (CBD) as well as by GEO Member governments.

URL: http://www.earthobservations.org/geobon.shtml

Contact
Gary Geller, NASA, USA, gary.n.geller@jpl.nasa.gov
Rob Jongman, Wageningen University and Research Centre, Netherlands, rob.jongman@wur.nl
Anne Larigauderie, DIVERSITAS, anne@diversitasinternational.org
Bob Scholes, CSIR, South Africa, bscholes@csir.co.za
Woody Turner, NASA, USA, woody.turner@nasa.gov

Carbon
The Carbon Community of Practice works to (i) improve understanding of the global carbon cycle; (ii) monitor and assess the effectiveness of carbon sequestration and emission-reduction activities on global atmospheric carbon dioxide levels; and (iii) promote interoperability and improve the infrastructure of carbon observing systems. It focuses on integrating carbon observations from all platforms, reservoirs, and time and space scales; establishing and integrating data from forest-carbon tracking sites worldwide; and supporting the validation and use of space-based greenhouse gas observations. The 2010 Carbon Strategy Report, developed by the Community of Practice, sets forth a series of actions to disseminate information on the status and availability of carbon observations.

URL: none at this stage

Contact
Antonio Bombelli, University of Tuscia and CMCC, Italy, bombelli@unitus.it

Coastal Zone
The Coastal Zone Community of Practice (CZCP) brings together scientists and other experts to support integrated coastal zone management (ICZM) decisions through utilization of Earth observations and information. The CZCP focuses on research and practical applications related to ICZM. Coastal users and data providers are engaged in specifying priority needs and requirements for observations and products to support ICZM. Through a series of workshops focused on GEOSS support for decision-making, the CZCP develops and strengthens networks that contribute to, or benefit from, GEOSS.

URL: http://www.czcp.org

Contact
Paul DiGiacomo, NOAA, USA, paul.digiacomo@noaa.gov
Hans-Peter Plag, University of Nevada-Reno, USA, hp plag@unr.edu

Energy
The Energy Community of Practice works to promote application of Earth observations and information to improve management of energy resources. Active in GEO for many years, the Energy Community of Practice has engaged stakeholders via professional societies, conferences, publications, and other communications, and educated end-users about the utility of global products from satellite observations. The Community of Practice involvement in various energy management applications yielded significant results in national and international energy programs through the transfer of science results to improve decision-making, for example in support of renewable energy and energy-efficient technology optimization.

URL: http://www.geoss-ecp.org

Contact
Ellsworth LeDrew, University of Waterloo, Canada, ells@uwaterloo.ca
Forest
The Forest Community of Practice focuses on fostering communication and coordination among GEO forest-related activities, which are enhancing observations and systems for forest mapping and monitoring of features such as cover, cover change, biomass and carbon, biodiversity, and fire disturbances. It also encourages registration of forest data and systems in the GEOSS Common Infrastructure, and supports the design of the Global Forest Observations Initiative (see Task SB-03).
URL: none at this stage

Contact
Michael Brady, World Bank, MBrady1@ifc.org

Geohazards
The Geohazards Community of Practice (GHCP) promotes the use of Earth observations and information for geohazards risk assessment, adaptation and vulnerability reduction, and disaster preparedness and reduction. The GHCP Road Map commits to working towards putting in place, by 2020, the building blocks of a comprehensive geohazards monitoring system in support of all phases of the risk-management cycle and increased resilience and disaster reduction. The GHCP will work to achieve this objective by developing a few carefully selected core-sites (regional centers of excellence) and will support scientific studies, technological developments, and policy and decision-making.
URL: http://www.geohazcop.org

Contact
Stuart Marsh, British Geological Survey, UK, shm@bgs.ac.uk
Hans-Peter Plag, University of Nevada-Reno, USA, hpplag@unr.edu

Global Agricultural Monitoring
The Global Agricultural Monitoring Community of Practice has close to 300 members representing a wide range of national and international agencies and organizations concerned with agricultural monitoring and crop forecasting. It works to promote the use of Earth observations and information for the (i) global monitoring of agricultural production to reduce risk and increase productivity at a range of scales; (ii) timely and accurate national (and where possible sub-national) agricultural statistical reporting; (iii) accurate forecasting of shortfalls in crop production and food supply; (iv) effective early warning of famine to aid timely international response; and (v) global mapping, monitoring, and modeling of changes in agricultural land use, type, and distribution. The Community of Practice is also working on a G20 initiative (see Task AG-01).
URL: http://www.earthobservations.org/cop_ag_gams.shtml

Contact
Wu Bingfang, Chinese Academy of Sciences, China, wubf@irsa.ac.cn
Chris Justice, University of Maryland-College Park, USA, justice@hermes.geog.umd.edu
Olivier Leo, Joint Research Centre, European Commission, olivier.leo@jrc.ec.europa.eu
Jai Singh Parihar, Indian Space Research Organization, India, Agmon_sec@ymail.com

Health and Environment
The Health and Environment Community of Practice seeks to address the user perspective on issues involving environment and health, with an emphasis on using Earth observations and information to improve health decision-making at the international, regional, country, and district levels. The Community of Practice supports the implementation of the GEO Health Tasks (HE-01 and HE-02),
focusing on tools and information for health decision-making in the areas of air-borne, water-borne and vector-borne diseases, and developing global monitoring systems for mercury and persistent organic pollutants. It further aims at building a holistic approach for health, with linkages to areas such as Biodiversity, Ecosystems, Water and Disasters.

URL: http://www.earthobservations.org/cop_he_henv.shtml

Contact
Ramesh Dhiman, National Institute of Malaria Research, India, dhimanrc@icmr.org.in
Rifat Hossain, World Health Organization, hossainr@who.int

Integrated Global Water Cycle Observations
The Integrated Global Water Cycle Observations Community of Practice (IGWCO) supports the implementation of the GEO Water Task (WA-01). The Community of Practice is supported by regional and specialized groups such as the Asian Water Cycle Initiative, the African Water Cycle Coordination Initiative, the Hydrological and Space network of Information for Latin American and the Caribbean (CIEHLYC), the International Precipitation Working Group of the Coordination Group for Meteorological Satellites (CGMS) and the Water Quality Working Group, which provide expertise in demonstration, deployment, and dissemination of new water-cycle technologies and approaches.

Work includes (i) developing integrated data products for soil moisture, runoff, groundwater, precipitation, water-cycle data integration, water-quality assessment, and monitoring; (ii) pilot projects for water discovery; and (iii) capacity-building activities and initiatives related to the monitoring and prediction of extreme events such as droughts and their impacts.

URL: http://www.earthobservations.org/wa_igwco.shtml

Contact
Wolfgang Grabs, World Meteorological Organization, wgrabs@wmo.int
Toshio Koike, University of Tokyo, Japan, tkoike@hydra.t.u-tokyo.ac.jp
Richard Lawford, Morgan State University, USA, richard.lawford@morgan.edu

Ocean
The Ocean Community of Practice brings together researchers, producers and distributors of ocean data and information. It focuses on achieving improved sustainability and interoperability of existing and new systems that provide essential environmental observations and information. The Community of Practice encourages use of the GEOSS Common Infrastructure (GCI) that facilitates improved access to ocean observations and information. It facilitates international coordination of ocean and marine observatories and observing programs, supports the implementation of GEOSS Principles to improve and enable continuity and open exchange of data and information and encourages information dissemination to relevant communities such as operational service providers, end-users, scientific and research communities.

URL: none at this stage

Contact
Albert Fischer, GOOS, UNESCO, a.fischer@unesco.org
Robert Houtman, NSF, USA, bhoutman@nsf.gov
Jay Pearlman, IEEE, jay.pearlman@ieee.org
APPENDIX B: ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AARSE</td>
<td>African Association of Remote Sensing of the Environment</td>
</tr>
<tr>
<td>ACMAD</td>
<td>African Centre of Meteorological Applications for Development</td>
</tr>
<tr>
<td>ACQWA</td>
<td>Assessing Climatic change and impacts on the Quantity and quality of Water</td>
</tr>
<tr>
<td>ADG</td>
<td>Advanced Database Gateway</td>
</tr>
<tr>
<td>AEGOS</td>
<td>African-European Geo-resources Observation System</td>
</tr>
<tr>
<td>AEMET</td>
<td>Spanish Meteorological Agency</td>
</tr>
<tr>
<td>AFIS</td>
<td>Advanced Fire Information System</td>
</tr>
<tr>
<td>AFRIMET</td>
<td>Intra-Africa Meteorology System</td>
</tr>
<tr>
<td>AFROMAISON</td>
<td>to propose concrete strategies for integrated natural resources management in Africa in order to adapt to the consequences of climate change</td>
</tr>
<tr>
<td>AGRICAB</td>
<td>A framework for enhancing Earth Observation capacity for Agriculture and Forest Management in Africa as a contribution to GEOSS</td>
</tr>
<tr>
<td>AGRIMET</td>
<td>Agricultural weather station network</td>
</tr>
<tr>
<td>AIP</td>
<td>Architecture Implementation Pilot</td>
</tr>
<tr>
<td>AIST</td>
<td>National Institute of Advanced Industrial Science and Technology</td>
</tr>
<tr>
<td>ARCSITE</td>
<td>Nigeria regional centre for Space Science and Technology Education-English</td>
</tr>
<tr>
<td>ASI</td>
<td>Italian Space Agency</td>
</tr>
<tr>
<td>AWCI</td>
<td>Asian Water Cycle Initiative</td>
</tr>
<tr>
<td>BCCR</td>
<td>Bjerknes Centre for Climate Research, Norway</td>
</tr>
<tr>
<td>BGS</td>
<td>British Geological Survey</td>
</tr>
<tr>
<td>BFG</td>
<td>German Federal Institute of Hydrology</td>
</tr>
<tr>
<td>BNSC</td>
<td>British National Space Centre</td>
</tr>
<tr>
<td>BOM</td>
<td>Australian Bureau of Meteorology</td>
</tr>
<tr>
<td>BRGM</td>
<td>French Geological and Mining Research Bureau</td>
</tr>
<tr>
<td>CARSA</td>
<td>China Association for Remote Sensing Application</td>
</tr>
<tr>
<td>CAS</td>
<td>Chinese Academy of Sciences</td>
</tr>
<tr>
<td>CBD</td>
<td>Convention on Biological Diversity</td>
</tr>
<tr>
<td>CBERS</td>
<td>China-Brazil Earth Resources Satellite</td>
</tr>
<tr>
<td>CBS</td>
<td>Commission for Basic Systems, programmes from WMO</td>
</tr>
<tr>
<td>CCDAS</td>
<td>Carbon Cycle Data Assimilation System</td>
</tr>
<tr>
<td>CCS</td>
<td>Carbon Capture and Sequestration</td>
</tr>
<tr>
<td>CDIGAM</td>
<td>Coordinated Data Initiatives for Global Agricultural Monitoring</td>
</tr>
<tr>
<td>CEA</td>
<td>Chinese Earthquake Administration</td>
</tr>
<tr>
<td>CEOE</td>
<td>Center for Earth Observation and Digital Earth, China</td>
</tr>
<tr>
<td>CEOP</td>
<td>Coordinated Energy and Water Cycle Observations Project</td>
</tr>
<tr>
<td>CEOS</td>
<td>Committee on Earth Observation Satellites</td>
</tr>
<tr>
<td>CFFDRS</td>
<td>Canadian Forest Fire Danger Rating System</td>
</tr>
<tr>
<td>CFS</td>
<td>Canadian Forest Service</td>
</tr>
<tr>
<td>CGMS</td>
<td>Coordination Group for Meteorological Satellites</td>
</tr>
<tr>
<td>CGS</td>
<td>South African Council for Geoscience</td>
</tr>
<tr>
<td>ChloroGIN</td>
<td>Chlorophyll Ocean Globally Integrated Network</td>
</tr>
</tbody>
</table>
CIESIN Center for International Earth Science Information Network
ClimDev Africa Climate for Development in Africa
CLIVER Climate Variability Research Program
CMA Chinese Meteorological Administration
CMACast CMA contribution to GEONETCast; utilises the AsiaSat 4 satellite beam to broadcast data and products to a user community in the Asia Pacific region
CMCC Italian Euro-Mediterranean Center for Climate Change
CNES French Space Agency
CNR Canadian Natural Resources
CNR-IIA Italy National Research Council - Institute for Atmospheric Pollution
CODATA ICSU Interdisciplinary Scientific Committee on Data for Science and Technology
CONAE Argentinean National Commission of Space Activities
CoP Community of Practice
COPD Chronic Obstructive Pulmonary Disease
COSPAR Committee on Space Research
CPR Continuous Plankton Recorder
CPTEC Centro de Previsao de Tempo e Estudos Climaticos
CRESDA Center for Resource Satellite Data and Applications, China
CSA Canadian Standards Association
CSIR Council for Scientific and Industrial Research, South Africa
CSIRO Commonwealth Scientific and Industrial Research Organisation
CSIS Center for Strategic and International Studies
Data-CORE GEOSS Data Collection of Open Resources for Everyone
DB Direct-Broadcast stations
DEM Digital Elevation Model
DEWFORA Improved Drought Early Warning and Forecasting to strengthen preparedness and adaptation to droughts in Africa
DFD German Remote Sensing Data Center
DG-RTD EC Directorate-General for Research and Technological Development
DIAS Data Integration and Analysis System
DIVERSITAS An international programme of biodiversity science
DLR German Aerospace Center
DMI Danish Meteorological Institute
DMN Morocco Direction de la Météorologie Nationale
DST Department of Science and Technology, South Africa
DWD Deutscher Wetterdienst (Germany)
EARS East African Rift System
EARSeL European Association of Remote Sensing Laboratories
EBONE European Biodiversity Observation Network
EC Ecosystems
EC European Commission
ECMWF European Centre for Medium-range Weather Forecasts
ECVs Essential Climate Variables
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDRS</td>
<td>European Data Relay Satellite</td>
</tr>
<tr>
<td>EEA</td>
<td>European Environmental Agency</td>
</tr>
<tr>
<td>EFAS</td>
<td>European Flood Alert System</td>
</tr>
<tr>
<td>EFFIS</td>
<td>European Forest Fire Information System</td>
</tr>
<tr>
<td>EGIDA</td>
<td>Coordinating Earth and Environmental Cross-Disciplinary Projects to promote GEOSS</td>
</tr>
<tr>
<td>EMERMET</td>
<td>Countries Emerging from Conflict and Natural Disasters Project</td>
</tr>
<tr>
<td>ENDORSE</td>
<td>Energy DOwnstREASERVICES</td>
</tr>
<tr>
<td>EnerGEO</td>
<td>EO for monitoring and assessment of the environmental impact of energy use</td>
</tr>
<tr>
<td>ENSMP</td>
<td>Mines National College of Paris</td>
</tr>
<tr>
<td>EnviroGRIDS</td>
<td>Gridded management system for environmental sustainability and vulnerability</td>
</tr>
<tr>
<td>EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>EPOS</td>
<td>European Plate Observing System</td>
</tr>
<tr>
<td>ERACLIM</td>
<td>European Re-Analysis of global CLIMATE observations</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>ESONET</td>
<td>European Seas Observatory Network</td>
</tr>
<tr>
<td>e-SOTER</td>
<td>Web-based Regional Pilot Platform with data, methodology, and applications, using remote sensing to validate, augment and extend existing data</td>
</tr>
<tr>
<td>EUCentre</td>
<td>European Centre for Training and Research in Earthquake Engineering</td>
</tr>
<tr>
<td>EUMETCast</td>
<td>EUMETSAT Broadcast System for Environmental Data</td>
</tr>
<tr>
<td>EUMETSAT</td>
<td>European Organisation for the Exploitation of Meteorological Satellites</td>
</tr>
<tr>
<td>EuroGEOSS</td>
<td>European environment Earth observation system supporting INSPIRE and compatible with GEOSS (EC)</td>
</tr>
<tr>
<td>Ev-K2-CNR</td>
<td>High Altitude Scientific and Technological Research</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>FAPAR</td>
<td>Fraction of Absorbed Photosynthetically Active Radiation</td>
</tr>
<tr>
<td>FCT</td>
<td>Forest Carbon Tracking</td>
</tr>
<tr>
<td>FDIs</td>
<td>Fire Danger Indices</td>
</tr>
<tr>
<td>FDSN</td>
<td>International Federation of Digital Seismograph Networks</td>
</tr>
<tr>
<td>FGDC</td>
<td>Federal Geographic Data Committee</td>
</tr>
<tr>
<td>FIOCRUZ</td>
<td>Brazilian Oswaldo Cruz Foundation</td>
</tr>
<tr>
<td>FLUXNET</td>
<td>Network of Regional Networks Integrating Worldwide CO2 Flux Measurements</td>
</tr>
<tr>
<td>FP7</td>
<td>European Union 7th Framework Programme</td>
</tr>
<tr>
<td>FRA</td>
<td>FAO Global Forest Resources Assessments</td>
</tr>
<tr>
<td>GAW</td>
<td>Global Atmosphere Watch</td>
</tr>
<tr>
<td>GBIF</td>
<td>Global Biodiversity Information Facility</td>
</tr>
<tr>
<td>GCI</td>
<td>GEOSS Common Infrastructure</td>
</tr>
<tr>
<td>GCOS</td>
<td>Global Climate Observing System</td>
</tr>
<tr>
<td>GDEWS</td>
<td>Global Drought Early Warning Systems</td>
</tr>
<tr>
<td>GEF-TWAP</td>
<td>Global Environmental Facility – Transboundary Water Assessment Program</td>
</tr>
<tr>
<td>GEM</td>
<td>Global Earthquake Model</td>
</tr>
<tr>
<td>GENESI</td>
<td>Generic European Sustainable Information Space for the Environment (EC)</td>
</tr>
<tr>
<td>GEO</td>
<td>Group on Earth Observations</td>
</tr>
<tr>
<td>GEO BON</td>
<td>Group on Earth Observations Biodiversity Observation Network</td>
</tr>
</tbody>
</table>
GEO-JECAM Joint Experiments on Crop Assessment and Monitoring
GEONETCab GEO Network for Capacity Building project is to create the conditions for the improvement and increase of the GEO capacity building activities and framework
GEONETCast Near real time, global network of satellite-based data dissemination systems designed to distribute space-based, air-borne and in situ data, metadata and products to low-cost receiving stations maintained by users
GEOSS Global Earth Observation System of Systems
GEWEX Global Energy and Water Cycle Experiment
GFMC Global Fire Monitoring Center
GFOI Global Forest Observation Initiative
GFZ German Research Centre for Geosciences, Postdam
GGMN Global Groundwater Monitoring Network
GGOS Global Geodetic Observing System
GHG Greenhouse Gas
GIFS Global Interactive Forecast System
GIMS Global Information Management System on Environment and Health
GIS Geographical Information System
GISIN Global Invasive Species Information Network
GITeWS German Indonesian Tsunami Early Warning System
GLAM Global Agricultural Monitoring
GLIMS Global Land Ice Measurements from Space
GLOBCOVER ESA Global Land Cover Service
Glowasis Global Water Scarcity Information Service
GMES Global Monitoring for Environment and Security
GMOS Global Mercury Observation System
GODAE Global Ocean Data Assimilation Experiment
GOFC-GOLD Global Observation of Forest and Land Cover Dynamics
GOIS Global Ocean Information System
GOOS Global Ocean Observing System
GOS Global Observing System
GOSAT Greenhouse gases Observing SATellite
GPM Global Precipitation Measurement
GPS Global Positioning System
GSDI Global Spatial Data Infrastructure
GSN Global Seismographic Network
GTOS Global Terrestrial Observing System
GWFEWS Global Wildland Fire Early Warning System
HCF Health and Climate Foundation
HEALTHMET Strengthening capabilities to create links between meteorological, climatological and health services
HTAP Hemispheric Transport of Air Pollutants
HZG Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research, Germany
IAG International Association of Geodesy
IASI Infrared Atmospheric Sounding Interferometer
IB Implementation Board
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICIMOD</td>
<td>International Centre for Integrated Mountain Development</td>
</tr>
<tr>
<td>ICSU</td>
<td>International Council for Science</td>
</tr>
<tr>
<td>ICMR</td>
<td>Indian Council of Medical Research</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IGBP</td>
<td>International Geosphere-Biosphere Programme</td>
</tr>
<tr>
<td>IGCO</td>
<td>Integrated Global Carbon Observation</td>
</tr>
<tr>
<td>IGN</td>
<td>French National Geographic Institute</td>
</tr>
<tr>
<td>IGWCO</td>
<td>Integrated Global Water Cycle Observations (former IGOS Water Theme)</td>
</tr>
<tr>
<td>IIASA</td>
<td>International Institute for Applied Systems Analysis</td>
</tr>
<tr>
<td>IISD</td>
<td>International Institute for Sustainable Development</td>
</tr>
<tr>
<td>IISL</td>
<td>International Institute for Space Law</td>
</tr>
<tr>
<td>ILTER</td>
<td>International Long Term Ecological Research network</td>
</tr>
<tr>
<td>INM</td>
<td>Spanish National Meteorological Institute</td>
</tr>
<tr>
<td>INPE</td>
<td>Brazilian National Institute for Space Research</td>
</tr>
<tr>
<td>InSAR</td>
<td>Interferometric Synthetic Aperture Radar</td>
</tr>
<tr>
<td>IOC</td>
<td>Intergovernmental Oceanographic Commission</td>
</tr>
<tr>
<td>IOCCG</td>
<td>International Ocean Colour Coordinating Group</td>
</tr>
<tr>
<td>IPBES</td>
<td>Intergovernmental Platform on Biodiversity and Ecosystem Services</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>IRD</td>
<td>French Institut de Recherche pour le Développement</td>
</tr>
<tr>
<td>IRENA</td>
<td>International Renewable Energy Agency</td>
</tr>
<tr>
<td>IRI</td>
<td>International Research Institute for Climate and Society</td>
</tr>
<tr>
<td>IRSA</td>
<td>Institute of Remote Sensing Applications</td>
</tr>
<tr>
<td>ISCGM</td>
<td>International Steering Committee for Global Mapping</td>
</tr>
<tr>
<td>ISDR</td>
<td>International Strategy for Disaster Reduction</td>
</tr>
<tr>
<td>ISPR/A</td>
<td>Italy Institute for Environmental Protection and Research</td>
</tr>
<tr>
<td>ISPRS</td>
<td>International Society for Photogrammetry and Remote Sensing</td>
</tr>
<tr>
<td>ISRIC</td>
<td>International Soil Reference and Information Centre</td>
</tr>
<tr>
<td>ISRO</td>
<td>Indian Space Research Organisation</td>
</tr>
<tr>
<td>ITC</td>
<td>International Institute for Geo-Information Science and Earth Observation</td>
</tr>
<tr>
<td>ITC</td>
<td>International Training Centre</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunication Union</td>
</tr>
<tr>
<td>IUCAF</td>
<td>Scientific Committee on Frequency Allocations for Radio Astronomy and Space Science</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for the Conservation of Nature and Natural Resources (World Conservation Union)</td>
</tr>
<tr>
<td>JAXA</td>
<td>Japan Aerospace Exploration Agency</td>
</tr>
<tr>
<td>JMA</td>
<td>Japan Meteorological Agency</td>
</tr>
<tr>
<td>JRC</td>
<td>Joint Research Center of the European Commission</td>
</tr>
<tr>
<td>KMA</td>
<td>Korea Meteorological Administration</td>
</tr>
<tr>
<td>KNMI</td>
<td>Royal Netherlands Meteorological Institute</td>
</tr>
<tr>
<td>KORDI</td>
<td>Korea Ocean Research and Development Institute</td>
</tr>
<tr>
<td>LAI</td>
<td>Leaf Area Index</td>
</tr>
<tr>
<td>LAM</td>
<td>Limited Area Model</td>
</tr>
</tbody>
</table>
LSCE Laboratoire des Sciences du Climat et de l’Environnement, France
MERIS Medium Resolution Imaging Spectrometer
MERIT Meningitis Environmental Risk Information Technologies
METAGRI West Africa Agriculture Meteorology Project
MetOffice Meteorological Office is the United Kingdom’s national weather service
MINES ParisTech French Institutes of education and research
MKFES Mariolopoulos-Kanaginis Foundation of Environmental Sciences, Greece
MODIS Moderate Resolution Imaging Spectroradiometer
MRC South African Medical Research Council
MRV Measurement Reporting and Verification
NAAMEX North American Airborne Mercury Experiment
NARSS National Authority for Remote Sensing and Space Sciences, Egypt
NASA National Aeronautics and Space Administration
NASG China National Administration of Surveying, mapping and Geo-information
NASRDA Nigeria National Space Research and Development Agency
NCAR National Center for Atmospheric Research
NCEP National Centers for Environmental Prediction
NERSC Nansen Environmental and Remote Sensing Center, Norway
NMI Norwegian Meteorological Institute
NRC National Resource Council Canada
NIDIS USA National Integrated Drought Information System
NIES Japan National Institute for Environmental Studies
NIOZ Royal Netherlands Institute for Sea Research
NMHS National Meteorological and Hydrological Service
NOAA National Oceanic and Atmospheric Administration
NPN US National Phenology Network
NSA Norwegian IT consulting and operations company
NSC Norwegian Space Centre
NSIDC US National Snow and Ice Data Center
NSMC China National Satellite Meteorological Center
NWP Numerical Weather Prediction
OGC Open Geospatial Consortium
PAGES Past Global Changes
PML UK Plymouth Marine Laboratory
POGO Partnership for Observation of the Global Ocean
POPs Persistent Organic Pollutants
QA4EO CEOS Quality Assurance for Earth Observation
R&D Research and Development
RAMSAR Convention on Wetlands
RCMRD Regional Centre for Mapping of Resources for Development
RECETOX Research Centre for Toxic Compounds in the Environment
REDD+ Reducing Emissions from Deforestation and Forest Degradation, including the role of conservation, sustainable management of forests and enhancement of forest carbon stocks
REDDAF Reducing Emissions from Deforestation and Degradation in Africa: Improved Forest Monitoring Services in Developing Countries

REDD-FLAME REDD Fast Logging Assessment & Monitoring Environment project for monitoring tropical and sub-tropical forests using high-resolution radar imagery acquired by Earth Observation satellites

REGATTA Regional Gateway for Technology Transfer and Climate Change Action in Latin America and the Caribbean

RESTEC Remote Sensing Technology Center of Japan

RIOCC The Latin Network of climate Change Offices

S&T Science and Technology

SAFARI Societal Applications in Fisheries & Aquaculture using Remotely-Sensed Imagery

SAEON South African Environmental Observation Network

SAFE Space Application for Environment

SAON Sustaining Arctic Observing Networks

SAR Synthetic Aperture Radar

SAWS South African Weather Service

SBA Societal Benefit Area

SCHIAMACHY Scanning Imaging Absorption Spectrometer for Atmospheric Cartography

SDI Spatial Data Infrastructure

SDS Sand and Dust Storm

SDS-WAS Sand and Dust Storm Warning and Assessment System

SEOCA Fostering cooperative ties between the countries of Central Asia and Europe in developing and applying Earth Observation (EO) technologies for effective environmental monitoring

SERVIR Regional Visualization and Monitoring System

SHARE Stations at High Altitude for Research on the Environment network

SIF Standards and Interoperability Forum

SMB Shanghai Meteorological Bureau, China

SOA State Oceanic Administration, China

SOP Standard Operating Procedure

SPOT Système Probatoire d'Observation Terrestre

SST Sea Surface Temperature

SWFDP WMO Severe Weather Forecast Demonstration Project

T&D Tsunami Alerting Device

TES Tropospheric Emission Spectrometer flying aboard US (NASA) AURA satellite

THORPEX The Observing-system Research and Predictability Experiment

TIGER ESA-launched initiative focusing on the use of space technology for water resource management in Africa

TIGGE THORPEX Interactive Global Grand Ensemble

TNO Netherlands Organization for Applied Scientific Research

UDEC University of Conception in Chile

UFPR Brazilian Universidade Federal do Paraná

UK United Kingdom

UKMO United Kingdom Meteorological Office

UMD University of Maryland
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umvoto</td>
<td>Earth Sciences consultancy specializing in hydro-geological applications, Geographic Information Systems (GIS) and Disaster Risk Management practice</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UNCCD</td>
<td>United Nations Convention to Combat Desertification</td>
</tr>
<tr>
<td>UNECA</td>
<td>United Nations Economic Commission for Africa</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational Scientific and Cultural Organization</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>UNITAR</td>
<td>United Nations Institute for Training and Research Operational Satellite Applications Programme</td>
</tr>
<tr>
<td>UNOOSA</td>
<td>United Nations Office for Outer Space Affairs</td>
</tr>
<tr>
<td>UNOSAT</td>
<td>United Nations Operational Satellite Applications Programme</td>
</tr>
<tr>
<td>UNSPIDER</td>
<td>United Nations Platform for Space-based Information for Disaster Management and Emergency Response</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>USAID</td>
<td>United States Agency for International Development</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>USGEO</td>
<td>United States Group on Earth Observations</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>VI</td>
<td>Vegetation Index</td>
</tr>
<tr>
<td>VTI</td>
<td>The German National Forest Inventory</td>
</tr>
<tr>
<td>WCI</td>
<td>Water Cycle Integrator</td>
</tr>
<tr>
<td>WCMC</td>
<td>UNEP World Conservation Monitoring Centre</td>
</tr>
<tr>
<td>WCRP</td>
<td>World Climate Research Programme</td>
</tr>
<tr>
<td>WDNR</td>
<td>Wisconsin Department of Natural Resources, USA</td>
</tr>
<tr>
<td>WGMS</td>
<td>World Glacier Monitoring Service (Switzerland)</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WHOI</td>
<td>US Woods Hole Oceanographic Institution</td>
</tr>
<tr>
<td>WiFi</td>
<td>Standard for wirelessly connecting electronic devices</td>
</tr>
<tr>
<td>WIS</td>
<td>WMO Information System</td>
</tr>
<tr>
<td>Wiki</td>
<td>Page or Collection of Web pages designed to enable anyone who accesses it to contribute or modify content, using a simplified markup language</td>
</tr>
<tr>
<td>WIMAX</td>
<td>Worldwide Interoperability for Microwave Access</td>
</tr>
<tr>
<td>WMO</td>
<td>World Meteorological Organization</td>
</tr>
<tr>
<td>WWRP</td>
<td>World Weather Research Programme</td>
</tr>
<tr>
<td>YOTC</td>
<td>Year of Tropical Convection</td>
</tr>
<tr>
<td>ZAMG</td>
<td>Austria Central Institute for Meteorology and Geodynamics</td>
</tr>
</tbody>
</table>