GEO European Projects Workshop, Rome, 7.-8. May 2012

Predicting the Climate of Europe: the THOR project

Laurent Mortier – University of Paris for **Detlef Quadfasel (co-ordinator)** - University of Hamburg

THOR Goals

- Identify induced climate impacts of changes of the oceanic Thermohaline Circulation (THC) and the probability of extreme climate events
- Develop and operate an optimal ocean observing system for the North Atlantic component of the THC
- Assess the stability of the THC to increased freshwater run-off from the Greenland ice sheets for various global warming scenarios
- Forecast the Atlantic THC and its variability until 2025

THOR Goals

- Identify induced climate impacts of changes of the oceanic Thermohaline Circulation (THC) and the probability of extreme climate events
- Develop and operate an optimal ocean observing system for the North Atlantic component of the THC
- Assess the stability of the THC to increased freshwater run-off from the Greenland ice sheets for various global warming scenarios
- Forecast the Atlantic THC and its variability until 2025

Facts and Figures

- A FP7 Collaborative Project
- **Research focus:** Stability of the ThermoHaline Circulation
- **Duration:** 4 years, December 2008 November 2012
- **Number:** 20 participating institutions from 9 European countries
- **5 Core Themes**, around 60 Researchers
- **Project cost:** 12.95 million Euro
- **EU Funding:** 9.27 million Euro

Contact and data requests: THOR.EU@zmaw.de http://www.eu-thor.eu/

Atlantic Meridional Overturning Circulation

Sinking at high latitudes Mixing in the interior Southern Ocean upwelling

Atlantic Meridional Overturning Circulation

The compensating flow of warm water bring heat to northern Europe and keeps the eastern Nordic Seas free of ice.

Atlantic Meridional Overturning Circulation

Climate predictions show a weakening by about 30 % until 2100 radiative forcing - Greenhouse effect, freshwater forcing

On decadal time scales ocean circulation and memory plays the important role

The THOR AMOC Observing System

self-sustained moorings ship-surveys autonomous floats (ARGO) satellite remote sensing flux measurements

quantification of water mass formation

process-oriented experiments (mixing)

Water mass formation - transformation

Through winter time convection the Labrador Sea contributes about one-third to the deep AMOC branch

The Labrador Sea shows an overall warming since 1994

Deep-water volume fluxes in Denmark Strait

Synoptic section across Denmark Strait (July 2010)

Cold and dense overflows of Nordic Deep waters

DS – current meter mooring locations

Deep-water volume fluxes in Denmark Strait

The cold and dense overflows of Nordic Deep waters across the Greenland-Scotland Ridge have been very stable during 1996 - 2011

The North Atlantic has experienced a strong warming over the past decades

The circulation - in contrast - is very stable

A good knowledge of the state of the North Atlantic is a pre-requisite for reliable climate forecasts on decadal time scales.

With a different focus the observational work of THOR will be continued in NACLIM

blank