Regional to global radar based observations of tropical forests and detection of change:
Towards and operational forest monitoring system for GEO

Tony Milne1, Richard Lucas2 and Anthea Mitchell1

1CRC for Spatial Information, University of New South Wales, Kensington, NSW 2052 (T.Milne@unsw.edu.au; A.Mitchell@unsw.edu.au);
2University of Wales, Aberystwyth, United Kingdom (rml@aber.ac.uk).
Overview

• Forest monitoring requirements
 – Information requirements: Forest Carbon Tracking (FCT) task
 – National demonstrators (2009)

• The importance of radar
 – Radar systems
 – Integration with optical data

• Scaling and supportive datasets
 – Land cover information
 • Time series classifications
 – Forest inventory
 • Biomass
 • Structural attributes
 – Airborne data and derived products
 • LiDAR (height, cover, biomass)
 • Optical/hyperspectral (species, cover)

• Approaches to product generation
 – Forest/non-forest maps
 – Biomass, degradation and regrowth maps
Information requirements

• Forest/non-forest maps
 – Wall-to-wall, annual, 25 m mosaics
• Forest/non-forest
 – Annual trends
 – Accuracy metrics
• Forest degradation
 – Types and trends
• Context information
 – Land use
 – Forest classes
 – Plantation type
• Sparse woody perennial cover
• Biomass (carbon) stocks and changes
Forest Monitoring: National Demonstrators

- Established in 2009 to demonstrate capabilities for deriving forest cover information
- Key test sites
 - South America, Africa, Asia and Oceania
- Optical and radar data
 - 25 m spatial resolution
 - Annual wall-to-wall mosaics
- Near simultaneous remote sensing and ground observations
- Intensive validation sites
 - Forest inventory
 - High resolution remote sensing data
Current radar systems

- Complement optical data
- Key criteria for use:
 - Global, systematic, ongoing continuity, capacity to contribute to GEO objectives (e.g., forest/non-forest discrimination)

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Operational dates</th>
<th>Imaging mode</th>
<th>Target revisit time</th>
<th>Swath width (km)</th>
<th>Spatial resolution (m)</th>
<th>Incidence angle (°)</th>
<th>Cost (/km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archive</td>
<td></td>
<td>C-, L-, P- Full pol</td>
<td>Target dependent</td>
<td>10 – 15</td>
<td>10</td>
<td>0 – 70</td>
<td>Low or free</td>
</tr>
<tr>
<td>AIRSAR POLSAR</td>
<td>1993 – 2000</td>
<td>C- interferometer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIRSAR TOPSAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JERS-1</td>
<td>1992-1998</td>
<td>L-HH</td>
<td>44 days</td>
<td>75</td>
<td>18</td>
<td>32 – 38</td>
<td>0.36</td>
</tr>
<tr>
<td>SRTM</td>
<td>Feb 2000</td>
<td>C-HH+VV and X-HH+VV</td>
<td>11 day mission only</td>
<td>50 – 225</td>
<td>30 – 90</td>
<td>17 – 65</td>
<td>Free download</td>
</tr>
<tr>
<td>Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeoSAR</td>
<td>2000-</td>
<td>Dual Freq X-HH+HV and P-HH+HV LiDAR profiler</td>
<td>Target dependent</td>
<td>20</td>
<td>1.25 – 3 (X-), 1.25 – 5 (P-) 5 m (DEM)</td>
<td>34.3 – 41.5</td>
<td>High</td>
</tr>
<tr>
<td>ALOS PALSAR</td>
<td>2006-</td>
<td>Single L-HH</td>
<td>46 days</td>
<td>70</td>
<td>10</td>
<td>34.3 – 41.5</td>
<td>0.02 – 0.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dual L-HH+HV</td>
<td></td>
<td>70</td>
<td>20</td>
<td>34.3 – 41.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polarimetric (expt.) ScanSAR</td>
<td></td>
<td>30</td>
<td>30</td>
<td>9.7 – 50.8</td>
<td></td>
</tr>
<tr>
<td>ERS-1/2</td>
<td>1991-, 1995-</td>
<td>C-VV</td>
<td>35 days</td>
<td>80 – 100</td>
<td>26</td>
<td>20.1 – 25.9</td>
<td>0.06</td>
</tr>
<tr>
<td>RADARSAT-1</td>
<td>1995-</td>
<td>C-HH</td>
<td>24 days</td>
<td>35 – 500</td>
<td>10 – 100</td>
<td>10 – 49</td>
<td>0.02 – 1.98</td>
</tr>
<tr>
<td>RADARSAT-2</td>
<td>2007-</td>
<td>C- Quad pol</td>
<td>24 days</td>
<td>20 – 500</td>
<td>2.5 – 100</td>
<td>0.02 – 9.88</td>
<td></td>
</tr>
<tr>
<td>ENVISAT</td>
<td>2002-</td>
<td>Single C-VV or HH</td>
<td>35 days</td>
<td>100</td>
<td>30</td>
<td>15 – 45</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dual C-VV+HH</td>
<td></td>
<td>100</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Global monitoring mode</td>
<td></td>
<td>400</td>
<td>1000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TerraSAR-X</td>
<td>2007-</td>
<td>Single X-HH</td>
<td>11 days</td>
<td>10 – 100</td>
<td>1 – 16</td>
<td>38.3 – 40.6</td>
<td>0.3 – 3.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dual X-HH+HV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Radar: all weather, day and night observations, cloud and haze penetrating
Information content: optical *versus* radar

- **Optical data**
 - Retrieve information on 2D structure
 - 3D structure inferred

- **Radar data**
 - Lower frequency
 L-band microwaves penetrate canopy
 - 3D structure observed
Different frequencies of radar

AIRSAR 5 m - Fly River, PNG
Different polarisations of radar

• Different scattering mechanisms
 – Volume scattering
 – Double bounce
 – Single bounce
• Provision of retrieval of component biomass
Historical links: Decadal time-series data

Irian Jaya Indonesia / Papua New Guinea

JERS-1 1996 (1992-98) HH

PALSAR 2007 (2007-) HH, HV, Ratio
Time-series datasets: Annual

- Derive trend information about land use and forest cover changes
- Conversion of mangroves for aquaculture, Perak, Malaysia
Time-series datasets: Intra-annual
Provision of dry and wet season data

JERS-1 mosaic, SE Asia
Shimada et al., 2002

Dry season Jan/Feb 1997
Wet season Aug 1998
Integrating SAR data of different frequencies

- X-band VV magnitude
- P-band HH magnitude
- GeoSAR Height retrieval
- H_{int} surrogate veg height (X- minus P-band height)
- GeoSAR magnitude
- PNG terrain classification
- Segmented span image (DEM difference & magnitude)
Scaling and supportive datasets

- Interpretation and validation of radar classifications
- Terrestrial laser scanner – complement ground measurements and derive vegetation parameters to interpret full waveform LiDAR – scale up to, and interpret radar
Species/community mapping

- Individual tree crown delineation and species differentiation
- Automated clustering to map community composition
Tree to Stand Level Products

Tree height (LiDAR)

Species (Hyperspectral)

Location and density of stems (LiDAR)

Stand-level biomass

Biomass: Leaf

Branch

Trunk

Total

(Integration with data from optical sensors)
Approaches to product generation

- Forest/non-forest
 - Landsat FPC which gives clear cut between forest and non-forest
 - QLD threshold 12% FPC (~20% canopy cover)
 - FPC is a measurable biophysical parameter
 - Radar equivalent using thresholds applied to L-band data and biomass
Approaches to product generation

- **Classification**
 - Pixel-based
 - Object orientated
Woody Regrowth Mapping

Landsat-derived Foliage Projected Cover
Woody Regrowth Mapping

Advanced Land Observing Satellite (ALOS)
L-band SAR (HH)
Approaches to product generation

- Biomass – indirect measurement using allometry
 - Intensity relationships
 - Polarimetric interferometry
- Increase knowledge of carbon stocks & biodiversity
• Time-series airborne LiDAR to detect environmental change
• Detection of change based on time-series comparison of SAR data requires robust field data to support interpretation and development of algorithms
Quantifying land/forest use

• Logging monitoring: TerraSAR-X Spotlight mode 1 m
Land/forest use

- Selective tree death – dead standing timber
- High L-band backscatter but low FPC
Land/forest use

- Treatment of pastures – detection of chaining or strip ploughing
Deforestation: importance of time-series

- Landsat time-series 1973-2003, Manuas, Brazil
 - Information on forest age but also history of land use prior to abandonment to regenerating forest
Regrowth mapping using multi-frequency radar

Reduced return from Acacia-dominated regrowth with decreasing frequency

Areas of *Acacia* regrowth particularly prominent (red) in total power image (C-band in red)
Concluding remarks

- Forest monitoring requirements
 - Required products for National Demonstrators
- The importance of radar
 - Time-series from 1990s-
 - Cloud-penetrating
 - Different frequencies and polarisations
 - Integration with optical data
- Supportive datasets
 - Land cover information
 - Forest inventory: biomass and structure measurements
 - Airborne data and derived products:
 - LiDAR (height, cover, biomass)
 - Optical/hyperspectral (species, cover)
- Approaches to product generation
 - Forest/non-forest maps: integration with optical, e.g., Landsat FPC
 - Approaches to classification
 - Integration of radar and optical data for mapping regrowth
 - Biomass maps: intensity and polarimetric interferometry
 - Land/forest use, degradation and regrowth maps